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Uncovering Nonlinear Dynamics:
The Case Study of Sea Clutter

Simon Haykin, Rembrandt Bakker, and Brian Currie
Abstract - Nonlinear dynamics are basic to the characterization of
many physical phenomena encountered in practice. Typically, we are
given a time series of some observable(s), and the requirement is to
uncover the underlying dynamics responsible for generating the time
series. This problem becomes particularly challenging when the
process and measurement equations of the dynamics are both
nonlinear and noisy. Such a problem is exemplified by the case study
of sea clutter, which refers to radar backscatter from an ocean surface.

After setting the stage for this case study, the paper presents
tutorial reviews of (1) the classical models of sea clutter based on the
compoundK-distribution and (2) the application of chaos theory to sea
clutter. Experimental results are presented that cast doubts on chaos as
a possible nonlinear dynamical mechanism for the generation of sea
clutter. Most importantly, experimental results show that on timescales
smaller than a few seconds, sea clutter is very well described as a
complex autoregressive process of order 4 or 5. On larger timescales,
gravity or swell waves cause this process to be modulated in both
amplitude and frequency. It is shown that the amount of frequency
modulation is correlated with the nonlinearity of the clutter signal.
The dynamical model is an important step forward from the classical
statistical approaches, but it is in its early stages of development.

Keywords: Nonlinear dynamics. Radar. Sea clutter. Compound K-
distribution. Chaos. Short-time Fourier-transform. Time-Doppler.
Modulation. Complex autoregressive models.

I. INTRODUCTION

Nonlinear dynamicsare basic to the characterization of
many physical phenomena encountered in practice. Typically,
we are given a time series of some observable(s), and the
requirement is to uncover the underlying dynamics responsible
for generating the time series. In a fundamental sense, the
dynamics of a system are governed by a pair of nonlinear
equations:
• A recursive process equation, which describes the

evolution of the hidden state vector of the system with
time:

(1)
where the vectorx(n) is thestateat discrete timen, v(n) is
the dynamicalor process noise, and f is a vector-valued
nonlinear function.

• A measurement equation, which describes the dependence
of observations (i.e., measurable variables) on the state:

(2)
wherey(n) is theobservation(assumed to be scalar),w(n)
is themeasurement noise, andh is a nonlinear function.

The explicit dependence of both nonlinear functionsf andh on
time n emphasizes the time-varying nature of the dynamical
system.

Equations (1) and (2) define thestate-space modelof a
nonlinear, time-varying dynamical system in its most general
form. The exact form of the model adopted in practice is

influenced by two perspectives that are in a state of “tensio
with each other:
• Mathematical tractability
• Physical considerations

Mathematical tractability is at its easiest when the syste
is linear and the dynamical noisev(n) and measurement noise
w(n) are both additive and modeled as independent whi
Gaussian noise processes. Under this special set of conditions
the solution to the problem of uncovering the underlyin
dynamics of the system is to be found in the celebratedKalman
filter [1]. In a very clever way, the Kalman filter solves the
problem by exploiting the fact that there is a one-to-on
correspondence between the given sequence of observ
samples and the sequence ofinnovationsderived from one-step
predictions of the observables; the innovation is defined as
difference between the observationy(n) and its minimum
mean-square error prediction given all previous values of t
observation up to and including timen-1.

Unfortunately, many of the dynamical system
encountered in practice arenonlinear, which makes the
problem of uncovering the underlying dynamics of the syste
a much more difficult proposition. Consider, for example, th
time series displayed in Fig. 1. These time series, made up
sampled signal amplitude versus time, were obtained by
instrument-quality, multi-function radar, which was configure
to monitor a patch of the ocean surface at a low grazing ang
Appendix A presents a brief description of the radar. The rad
was mounted at a site in Dartmouth, Nova Scotia, on the E
Coast of Canada, at a height of about 30m above the sea le
The radar was operated in adwelling modeso that the
dynamics of thesea clutter(i.e., radar backscatter from the
ocean surface) recorded by the radar would be entirely due
the motion of the ocean waves and the natural motion of the
surface itself. Throughout the paper we will make extensive u
of three different data sets. Two data sets were measured at
wave-height conditions (0.8 m) and are labelledL1 andL2. For
the third data set, labelledH, the wave height was higher (1.8
m); the characteristics of these data sets are summarized
Appendix B.

From the viewpoint of dynamical systems as characteriz
by (1) and (2), we may identify six potential source
responsible for the difficulty in understanding the comple
appearance of the time series in Fig. 1:
(i) The dimensionality of the state.
(ii) The function f governing the nonlinear evolution of

the state with time.
(iii) The possible presence of dynamical nois

complicating the evolution of the state with time.
(iv) The function h governing dependence of the rada

observable on the state.

x n 1+( ) f n x n( ) v n( ),,( )=

y n( ) h n x n( ) w n( ),,( )=

(Invited paper)



ism
].
n
ed
ce
tic

ear
ed

e

er
g

t,
ea
e

e
l

ot

et
w-

ds

e
le

at
ea

II
ter,

e
to

t the

he
o
w

sult
es

del
n

fic
e
ent
be
(v) The unavoidable presence of measurement noise due
to imperfections in the instruments used to record the
sea clutter data.

(vi) The inherently nonstationary nature of sea clutter.
Many, if not all, of these parameters/processes are unknown,
which makes the uncovering of the underlying dynamics of sea
clutter into a challenging task.

Figure 1: Radar return plots: (a) data setL2, VV polarization; (b) data
set H, VV polarization; and (c) data setH, HH polarization. |x| is the
magnitude of the complex envelope of the return signal. The units ofx
are normalized.

Random-looking time-series, such as those of Fig. 1, can
be modeled at various levels of sophistication. The crudest
form is to look at the probability density function (pdf) of the
data, ignoring any type of correlation in time. At the next level,
correlations in time are modeled by a linear or higher order
relationship, and the residuals are described by their pdf. A
third level of sophistication is sometimes possible for systems
that exhibit low-dimensional dynamics[2-7]. For a subset of
these systems, namely, deterministic chaotic systems, the time-
series can be described completely in terms of nonlinear
evolutions, and, assuming a perfect model and noise-free
measurements, there are no residuals at all. The deterministic
chaos approach has enormous potential in that it makes it
possible to reproduce the mechanism underlying the
experimental data with a computer model. It has attracted the
attention of numerous researchers in the natural and applied
sciences, trying to identify if their data are close to being
chaotic and lend themselves for a deterministic modeling
approach.Chaos theoryitself is motivated by earlier works of
Kaplan and Yorke [8], Packard et al. [9], Takens [10], Mañé
[11], Grassberger and Procaccia [12], Ruelle [13], Wolf et al.
[14], Broomhead and King [15], Sauer et al. [16], Sidorowich
[17], and Casdagli [18]. Indeed, it was these papers that

aroused interest in deterministic chaos as a possible mechan
for explaining the underlying dynamics of sea clutter [19-23
Unfortunately, for reasons that will be explained later i
Section III, currently available state-of-the-art algorithms us
to estimate the chaotic invariants of sea clutter produ
inconclusive results, which cast serious doubts on determinis
chaos as a possible mathematical basis for the nonlin
dynamics of sea clutter. This conclusion has been reinforc
further by the inability to design a reliable algorithm for th
dynamic reconstruction of sea clutter.

All along, our own primary research interests in sea clutt
have been driven by the following issues of compellin
practical importance:
• Sea clutter is a nonlinear dynamical process withtime

playing a critical role in its characterization. By contras
much of the effort devoted to the characterization of s
clutter during the past fifty years has focused on th
statistics of sea clutter, with little attention given to tim
[24-30], other than adapting to time-varying statistica
parameters.

• Understanding the nonlinear dynamics of sea clutter is n
only important in its own right but it will have a significant
impact on the joint detection and tracking of a point targ
on or near the sea surface. Such targets include a lo
flying aircraft, small marine vessels, and floating hazar
(e.g., ice).

• Identifying the particular part of the expanding literatur
on nonlinear dynamics, which is applicable to reliab
characterization of sea clutter.

This paper is written with these objectives in mind, given wh
we currently know about the statistics and dynamics of s
clutter.

The rest of the paper is organized as follows. Section
presents a tutorial review of the classical models of sea clut
with primary emphasis on the compoundK-distribution.
Section III presents a critical review of results reported in th
literature on the application of deterministic chaos analysis
sea clutter. The discussion presented therein concludes tha
discovery that a real-worldexperimentaltime series is chaotic
has a high risk of being aself-fulfilling prophecy. We justify
this statement by revisiting earlier claims that sea clutter is t
result of a deterministic chaotic process. In Section IV, we g
back to first principles in modulation theory and present ne
experimental results demonstrating that sea clutter is the re
of a hybrid continuous-wave modulation process that involv
amplitude as well as frequency modulation; this section also
includes a time-varying, data-dependent autoregressive mo
for sea clutter, which, in a way, relates to our earlier work o
the autoregressive modeling of radar clutter in an air-traf
control environment [35-38]. Section V, the final section of th
paper, presents conclusions and an overview of the curr
directions of research on recursive-learning models that may
relevant to the nonlinear dynamics of sea clutter.
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II. STATISTICAL NATURE OF SEA CLUTTER:
CLASSICAL APPROACH

Sea clutter, referring to the radar backscatter from the sea
surface, has a long history of being modeled as a stochastic
process, which goes back to the early work of Goldstein [24].
One of the main reasons for this approach has been the
random-looking behavior of the sea clutter waveform. In the
classical view, going back to Boltzmann, the irregular behavior
of a physical process encountered in nature is believed to be
due to the interaction of a large number of degrees of freedom
in the system, hence the justification for the statistical
approach.

There are three signal domains of the radar waveform in
which the clutter properties need to be characterized:
amplitude, phase, and polarization. Non-coherent radars
measure only the envelope (amplitude) of the clutter signal.
Coherent radars are able to measure both signal amplitude and
phase. Polarimetric effects are evident in both types of radar.
Before discussing these effects, some background on the
characterization of the sea surface and consideration of the
geometry of a low-grazing-angle radar is desirable.

A.  Background

It is the nature of the surface roughness that determines the
properties of the radar echo [35]. The roughness of the sea
surface is normally characterized in terms of two fundamental
types of waves. The first type is termed gravity waves, with
wavelengths ranging from a few hundred metres to a fraction of
a metre. The dominant restoring force for these waves is the
force of gravity. The second type is smaller capillary waves
with wavelengths on the order of centimeters or less. The
dominant restoring force for these waves is surface tension.

The gravity waves, which describe the macrostructure of
the sea surface, can be further subdivided into sea and swell.
Sea consists of wind-waves: steep short-crested waves driven
by the winds in their locale. Swell consists of waves of long
wavelength, nearly sinusoidal in shape, produced by distant
winds. The very irregular appearance of the sea surface is due
to interference of the various wind and swell waves and to local
atmospheric turbulence. Near coastlines, ocean currents
(usually tidal currents) may cause a considerable increase in
the wave heights due to their interference with wind and swell
waves. The microstructure of the sea surface - the capillary
waves - are usually caused by turbulent gusts of wind near the
surface.

Waves are primarily characterized by their length, height
and period. The phase speed is the ratio of wave length over
wave period. Wave length and period (hence, phase speed) can
be derived from the dispersion relation [36]. Wave height
fluctuates considerably. A commonly reported measure is
significant wave height,defined as the average peak-to-trough
height of the one-third highest waves. It indicates the
predominant wave height.

To provide a simple metric to indicate qualitatively the
current sea conditions, the concept of the sea-state was

introduced. Table 2-1 in [35] links expected wave paramete
such as height and period, to environmental factors includi
wind speed, duration, and fetch. The frequently used short fo
gives the sea-state number only.

The angle at which the radar beam illuminates the surfa
is called the grazing angle, , measured with respect to
local horizontal. The smallest area,Ar, of the sea surface within
which individual targets can no longer be individually resolve
is termed the resolution cell, whose area is given by

(3)

where R is range, is the azimuthal beamwidth of th

antenna,c is the speed of light,τ is the radar pulse length, and
 is the grazing angle.

The backscatter power (square of the amplitude) has b
studied at two different time scales. Studies [37] have produc
empirical models relating to the long-term (over sever
minutes) average, given as the normalized radar cross sect
to various parameters, including grazing angle, radar freque
and polarization, and wind and wave conditions.

A.1 Polarimetric effects

One of the dominant scattering mechanisms at microwa
frequencies and low-to-medium grazing angles isBragg
scattering. It is based on the principle that the returned signa
from scatterers that are half a radar wavelength apart (measu
along the line of sight from the radar) reinforce each oth
since they are in phase. At microwave frequencies, the Bra
scatter is from capillary waves. It has long been observed t
there is a difference in the behavior of sea backscat

depending on the transmit polarization.1 Horizontally-
polarized (HH) backscatter has a lower average power
compared to the vertically-polarized (VV) backscatter, a
predicted by the composite surface theory and Bragg scatte
[38]. As a consequence, most marine radars operate with
polarization. However, the HH signal often exhibits larg
target-like spikes in amplitude, with these spikes having
decorrelation times on the order of one second or more.

Figure 2 shows the evolution of the Doppler spectru
versus time for the coherent data used to generate
amplitude plots of Fig. 1. In this case of incoming waves, th
HH spectrum on average is shifted further from the frequen
origin (i.e., has a higher mean Doppler frequency), and at
times of strong signal content, the HH spectrum may rea
higher frequencies than does the VV spectrum.

The differences in the spectra suggest that differe
scatterers are contributing to the HH and VV returns. They c
be partially explained from conditions associated with breaki
waves. The breaking waves contribute to the bunching
scatterers, consistent with arguments for the applicability of t

1 A signal’s polarization is designated by a two-lette
combination TR, where T is the transmitted polarization (H o
V) and R is the received polarization (H or V).
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compoundK-distribution [39]. With the scatterers bunched at
or near the crest of the breaking wave, there is the opportunity
for a multipath reflection from the sea surface in front of the
wave. The polarization dependence arises from the relative
phase of the direct and surface-reflected paths. For VV
polarization, theBrewster effectmay lead to strong cancellation
of the return, whereas the HH polarization will exhibit a strong
(possibly spiky) return [39]. The Brewster angle is the
particular angle of incidence for which there is no reflected
wave when the incident wave is vertically polarized.

Figure 2:  Time-Doppler plots: (a) data setL2, VV polarization; (b)
data setH, VV polarization; and (c) data setH, HH polarization, using
a window size of 0.5s.

From X-band scatterometer data from advancing waves,
Lee et al [40] identified VV-dominant, comparatively short-
lived “slow (velocity) scatterers”, and HH-dominant longer-
lived “fast (velocity) scatterers”. Because the water particles
that define a breaking wave crest necessarily exceed the orbital
acceleration of the linear-wave group that initiates the
nonlinear evolution of the wave structure, the fact that fast
scatterers are observed is not surprising. Sea spikes from
advancing waves are collocated with the fastest scatterers,
which are identified with the wave crest. Based on
experimental data for approaching waves, Rino and Ngo [39]
suggest that the VV backscatter is responding to slower
scatterers confined to the back side of the wave while HH is
responding to the fast scatterers near the wave crest. The HH
response to the back-side scatterers (presumed to be Bragg-like
structures) may be suppressed due to the angular dependence
of the Bragg scattering.

B.  Current models

There are two goals related to the modeling of clutter. The
first goal is to develop an explanation for the observed behavior

of sea clutter, and in so doing, to gain insight into the physic
and electromagnetic factors that play a role in forming th
clutter signal. Based on the success of the first goal, the sec
goal is to produce a model, ideally physically based, wi
which a representative clutter signal can be generated,
extend receiver algorithm testing into clutter conditions fo
which sufficient real data are unavailable. Two current mode
that seek to address the second goal (at least in one of the si
domains) are the compoundK-distribution model and the
Doppler spectrum model.

B.1 Compound K-distribution

Characterization of the amplitude fluctuations of the s
backscatter signal is a continuing source of study. Much of t
early work in fitting amplitude distributions was based on th
use of a Gaussian model, implying Rayleigh distribute
amplitudes. However, it was soon found that operating wi
increased radar resolution and at low grazing angles,
Gaussian model failed to predict the observed increas
occurrence of higher amplitudes. Researchers began using t
parameter distributions to empirically fit these longer tail
Such distributions include Weibull [25], lognormal [41], and K
[29,30]. Use of the latter has led to the development of t
compoundK-distribution.

The nature of the sea surface, with its two fundamen
types of waves - short capillary and wind waves, and long
gravity waves - suggests the utility of a model composed of tw
(or perhaps more) components. This approach, in vario
forms, has been proposed by several researchers (e.g., [
[28]). One such approach is the compoundK-distribution
[28,29]. From experimental studies, it was found that ov
short periods, on the order of a few hundred milliseconds, t
sea clutter amplitude can be fit reasonably well with a Raylei
distribution. Then, averaging the data over periods on the or
of 30 ms to remove the fast fluctuation, the resulting long
term variation could be fit with a Chi (or root-gamma
distribution. The proposed model is one in which the overa
clutter amplitude is modeled as the product of a Rayleig
distributed term and a root-gamma distributed term. T
overall amplitude distributionp(x) is given by

(4)

The two pdfs within the integral, (namely, the conditional pd
of x giveny, and the pdf ofy acting alone), are

(5)

and

(6)

Equation (5) showsp(x|y) to be Rayleigh distributed, with the
mean level determined by the value ofy. The distribution of y
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given by (6) is Chi or root-gamma. Substituting (5) and (6) into
(4) yields

(7)

where .
The resulting overall distribution given by (7) is theK-

distribution; hence, the model is termed the compoundK-
distribution model. The Rayleigh-distributed component may
be considered as modeling the short-term fluctuation of the
scatterers, while the root-gamma distributed component
represents the modulation of the intensity of the scattering in
response to the gravity waves. Since sea clutter is locally
Rayleigh distributed (resulting from application of the central
limit theorem within a patch), it appears that the non-Rayleigh
nature of the overall clutter amplitude distribution is due to
bunching of the scatterers by the sea wave structure, rather than
being due to a small number of effective scatterers [29].

We need to consider the correlation properties of the
clutter amplitude. Figure 3 shows a typical plot of the
autocorrelation of the VV signal on two time scales. The left
trace, based on a sample period of 1ms, shows that the
correlation due to the fast fluctuation component is under
10ms. The right trace shows the long-term correlations, on the
order of 1s. Note, however, the apparent periodicity of the
long-term autocorrelation, on the order of 6.5s. This oscillation
reflects the periodicity of the swell wave.

Figure 3: Plots showing the two time scales of the clutter amplitude
autocorrelation, for the data of figure 1(b). The left graph shows the
quick initial decorrelation, on the order of a few milliseconds, of the
fast fluctuation component. The right graph shows the slowly
decaying and periodic correlation of the slow fluctuation component.
The oscillation reflects the periodicity of the swell wave.

For generatingK-distributed clutter, both Ward et al [29]
and Conte et al [43] have suggested the same basic structure,
shown in Fig. 4. Complex white Gaussian noise,w(n), is passed
through a linear filter, whose coefficients are chosen to
introduce the desired short-term correlation. The output of the
filter is still Gaussian distributed, so that the amplitude ofy(n)
is Rayleigh distributed. The modulating terms(n) is a real non-
negative signal with a much longer decorrelation time
compared toy(n). To generate a K-distributed amplitude, the
s(n) should be drawn from a Chi distribution. Addressing the
long-term correlation of the clutter requires generating
correlated Chi-distributed variatess(n). It is not possible to
produce an arbitrary correlation, but some useful results have
been reported. Gaussian variates are passed through a simple
first-order autoregressive filter, then converted using a

memoryless nonlinear transform into Chi variates with a
exponentially decaying autocorrelation. Watts [44
parameterizes the form of the autocorrelation in terms of t
clutter decorrelation time and the shape parameter of theK-
distribution. Details can be found in Watts [44], Tough an
Ward [45], and Conte et al [43].

Figure 4: Generic model for generating complex non-Gauss
correlated data. The thick line denotes the flow of complex quantiti
(after [43]).

B.2 Doppler Spectrum

A coherent radar is able to measure both the amplitude a
the phase of the received signal. The received baseband si
is a complex voltage, given either in terms of its in-phase
and quadrature (Q) components, or its magnitude (amplitude
and phase angle. Movement of the scatterer relative to the ra
causes a pulse-to-pulse change in the phase of the radar e
This phase change is equivalent to a Doppler frequency sh
given as

(8)

whereλ is the radar wavelength, andf is the Doppler frequency
shift resulting from the movement at a velocityv along the
radial between the radar and the scatterer. The Dopp
spectrum of sea clutter results from two main processes:
spread about the mean Doppler frequency is a manifestation
the random motion of the unresolved scatterers, while t
displacement of the mean Doppler frequency maps t
evolution of the resolved waves. Tracking the evolution of th
Doppler spectrum versus time can provide insight into th
scattering mechanisms, and identify properties that a sea clu
model should possess.

Note that in a realistic sea surface scenario, there will be
continuum of waves of various heights, lengths, and directio
This continuum is typically characterized by a wave frequen
spectrum (or wave-height spectrum), describing th
distribution of wave height versus wave frequency. There ar
number of models relating environmental parameters such
wind speed to the frequency spectrum [46]. The frequen
spectrum can then be extended to the directional freque
spectrum by introducing a directional distribution [47]. Unde
the assumption of linearity, the combined effect is th
superposition of all the waves, calculated by integrating acro
the appropriate range of directional wave numbers. In real
the final surface is a nonlinear combination of the continuum
waves.

Walker [48] studied the development of the Dopple
spectra for HH and VV polarizations as the breaking wa
passed the radar sampling area. Coincident video images w
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taken of the physical wave. Three types of scattering regimes
appear to be important: Bragg, whitecap, and spike events.
Walker [49] proposes a three-component model for the Doppler
spectrum based on these regimes.
(1) Bragg scattering:This regime makes VV amplitude greater

than HH. Both polarizations peak at a frequency
corresponding to the velocityv = vB + vD, wherevB is the
term attributable to the Bragg scatterers andvD is a term
encompassing the drift and orbital velocities of the
underlying gravity waves. The decorrelation times of the
two polarizations are short (tens of millseconds).

(2) Whitecap scattering:The backscatter amplitudes of the two
polarizations are roughly equal, and are noticeably
stronger than the background Bragg scatter, particularly in
HH, in which Bragg scattering is weak. In a time profile,
the events may be seen to last for times on the order of
seconds, but are noisy in structure and decorrelate quickly
(again, in milliseconds). Doppler spectra are broad and
centred at a speed noticeably higher than the Bragg speed,
at or around the phase speed of the larger gravity waves.

(3) Spikes:Spikes are strong in HH, but virtually absent in
VV, with a Doppler shift higher than the Bragg shift. They
last for a much shorter time than the whitecap returns (on
the order of 0.1 sec) but remain coherent over that time.

Each of these three regimes is assigned a Gaussian line shape,
with three parameters: its power (radar cross-section), centre
frequency, and frequency width. Assuming the overall
spectrum is a linear combination of its components, the VV
spectrum is the sum of Bragg and Whitecap lineshapes, while
the HH spectrum is the sum of Bragg, Whitecap, and Spike
lineshapes.

The model has been validated with experimental cliff-top
radar data, for which the widths and relative amplitudes of the
Gaussian lineshapes were determined using a minimization
algorithm.

Other researchers have similarly identified Bragg and
faster-than-Bragg components, using Gaussian lineshapes for
the former, and Lorentzian and/or Voigtian lineshapes for the
latter [40]. The results were reported for the case of breaking
waves but in the absence of wind.

In this section, we have focused on the classical statistical
approach for the characterization of sea clutter. In the next
section, we consider deterministic chaos as a possible
mechanism for the nonlinear dynamics of sea clutter.

III. I S THERE A RADAR CLUTTER ATTRACTOR?

The Navier-Stokes dynamical equationsare basic to the
understanding of the underlying principles of fluid mechanics,
including ocean physics [50]. Starting with these equations,
Lorenz [51] derived an unrealistically simple model for
atmospheric turbulence, which is described by three coupled
nonlinear differential equations. The model, bearing his name,
was obtained by deleting everything from the Navier-Stokes
equations that appeared to be extraneous to the simplest
mathematical description of the model. The three equations,

governing the evolution of theLorenz model, are deceptively
simple but the presence of certain nonlinear terms in all thr
equations gives rise to two unusual characteristics:
(i) A fractal dimension equal to 2.01.
(ii) Sensitivity to initial conditions, meaning that a very small

perturbation in initialization of the model results in a
significant deviation in the model’s trajectory in a
relatively short interval of time.

These two properties are the hallmark ofchaos [52], a subject
that has captured the interests of applied mathematicia
physicists, and to a much lesser extent, signal-process
researchers, during the past two decades.

A. Nonlinear Dynamics

Before anything else, for a process to qualify as a chao
process, its underlying dynamics must benonlinear. One test
that we can use to check for the nonlinearity of an experimen
time series is to employsurrogate dataanalysis [53]. The
surrogate data are generated by using a stochastic linear m
with the same autocorrelation function, or equivalently pow
spectrum, as the given time series. The exponential growth
inter-point distances between these two models is then use
the discriminating statistic to test thenull hypothesisthat the
experimental time series can be described by linea
correlated noise. For this purpose, theMann-Whitney rank-
sum-statistic, denoted by the symbolZ, is calculated. The
statistic Z is Gaussian distributed with zero mean and un
variance under the null hypothesis that two observed samp
of inter-point distances calculated for the experimental tim
series and the surrogate time series come from the sa
population. A value ofZ less than -3.0 is considered to be
solid reason for strong rejection of the null hypothesis, that
the experimental time series is nonlinear [54].

Appendix B summarizes three real-life sea clutter da
sets, which were collected with the IPIX radar on the Ea
Coast of Canada. (A brief description of the IPIX radar
presented in Appendix A.) Specifically, the data sets used
the case study are as follows:

• Data setL1, corresponding to a lower sea state, wit
the ocean waves moving away from the radar; th
sampling frequency of this data set is twice that of th
other two data setsH andL2.

• Data setH, corresponding to a higher sea state, wit
the ocean waves coming towards the radar.

• Data setL2, corresponding to a lower sea state, take
earlier the same day as data setH, and at a radar range
of 4 Km compared to 1.2 Km for data setH; this
difference in range causesH to have a considerably
better signal-to-noise ratio thanL2.

Two different types of surrogate data were generated:
• Data setsL1surr1, L2surr1, and Hsurr1, which were

respectively derived from sea clutter data setsL1, L2,
andH using the Tisean package described in [55]. Th
method keeps the linear properties of the da
specified by the squared amplitude of its Fourie
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transform, but randomizes higher order properties by
shuffling the phases.

• Data setsL1surr2 and Hsurr2, which are respectively
derived from sea clutter data setsL1 andH using a
procedure based on the compoundK-distribution, as
described in Conte et al. [43].

Table 1 summarizes the results of applying theZ-test to the
real-life and surrogate data sets. The calculations involving
surrogate data setsL1surr1, L2surr1, and Hsurr1 were repeated
four times with different random seeds, to get a feel for the
variability of the Z-statistic (and chaotic invariants to be
discussed). Based on the results summarized in Table 1, we
may state the following:
1. Sea clutter isnonlinear(i.e.,Z is less than -3) when the sea

state is high.
2. Sea clutter may be viewed aslinear (i.e.,Z is considerably

larger than -3) when the sea state is low and the ocean
waves are moving away from the radar. But, when the
ocean waves are coming toward the radar, sea clutter is
nonlinear(i.e.,Z is less than -3) even when the sea state is
low.

3. The surrogate data sets have largerZ-values (i.e., less
evidence for nonlinearity) than their original counterparts.
(Surrogate data setsL1surr1, L2surr1andHsurr1are linear by
construction.)
On the basis of these results, we may state that sea clutter

is a nonlinear dynamical process, with the nonlinearity
depending on the sea state being moderate or higher and the
ocean waves moving towards or away from the radar.

The next question to be discussed is whether sea clutter is
close to being deterministic chaotic. If so, we may then apply
the powerful concepts of chaos theory.

B. Chaotic Invariants

In the context of a chaotic process, two principal features,
namely, the correlation dimension and Lyapunov exponents,
have emerged asinvariants, with each one of them highlighting
a distinctive characteristic of the process.

Physical processes that require an external source of
energy are dissipative. For sea clutter, wind and temperature
differences (caused by solar radiation) are the external sources
of energy. A dissipative chaotic system is characterized by its
own attractor. Consider then the set of all admissible initial
conditions in the multidimensional state-space of the system,
and call this the initial volume. The existence of an attractor
implies that the initial volume eventually collapses onto a
geometric region whose dimensionality is smaller than that of
the original state-space. Typically, the attractor has a multisheet
structure that arises from the interplay between stabilizing and
disrupting forces. Thecorrelation dimension, originated by
Grassberger and Procaccia [12], provides an invariant measure
of the geometry of the attractor. For a chaotic process, the
correlation dimension is always fractal (i.e., non-integer).

Whereas the correlation dimension characterizes the
distribution of points in the state space of the attractor, the

Lyapunov exponentsdescribe the action of the dynamics
defining the evolution of the attractor’s trajectories. Suppo
that we now picture a small sphere of initial conditions aroun
a point in the state-space of the attractor and then allow e
initial condition to evolve in accordance with the nonlinea
dynamics of the attractor; then we find that in the course
time the small sphere of initial conditions evolves into a
ellipsoid. The Lyapunov exponents measure the exponen
rate of growth or shrinkage of the principal axes of the evolvin
ellipsoid. For a process to be chaotic, at least one of t
Lyapunov exponents must be positive so as to satisfy t
requirement of sensitivity to initial conditions. Moreover, th
sum of all Lyapunov exponents must be negative so as
satisfy the dissipative requirement.

With this brief overview of chaotic dynamics, we return t
the subject at hand: the nonlinear dynamics of sea clutter.

In an article published in 1990, Leung and Haykin [19
posed the following question:

“Is there a radar clutter attractor?”
By applying the Grassberger-Procaccia algorithm to s

clutter, Leung and Haykin obtained a fractal dimensio
between 6 and 9. Independently of this work, Palmer et al. [2
obtained a value between 5 and 8 for the correlation dimens
of sea clutter.

These initial findings prompted Haykin and co
investigators to probe more deeply into the possib
characterization of sea clutter as a chaotic process by look
into the second invariant: Lyapunov exponents. Haykin and
[22] reported one positive Lyapunov exponent followed by a
exponent very close to zero, and several negative expone
This was followed by a more detailed investigation by Hayk
and Puthusserypady [23], using state-of-the-art algorithms:
• A maximum-likelihood-based algorithm for estimating th

correlation dimension [56].
• An algorithm based on Shannon’s mutual information fo

measuring the embedding delay [57,58].
• Global embedding dimension, using the method of fal

nearest neighbors [59]; theembedding dimensionis
defined as the smallest integer dimension that unfolds
attractor.

• Local embedding dimension, using the method of loc
false nearest neighbors [60]; the local embeddin
dimension specifies the size of the Lyapunov spectrum.

• An algorithm for estimating the Lyapunov exponents
which involves recursive QR decomposition applied to th
Jacobian of a function that maps points on the trajectory
the attractor into corresponding points a prescribe
number of time steps later [61, 62].

The findings reported by Haykin and Puthusserypady [23] a
summarized here:
• Correlation dimension between 4 and 5.
• Lyapunov spectrum consisting essentially of 5 exponen

with two positive, one close to zero, and the remainin
ones negative, with the sum of all the exponents bei
negative.

• Kaplan-Yorke dimension, derived from the Lyapuno
spectrum, very close to the correlation dimension.
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These findings were so compelling, in light of known chaos
theory, that the generation of sea clutter was concluded to be
the result of a chaotic mechanism, on which we have more to
say in Section E.

C. Inconclusive Experimental Results on the Chaotic
Invariants of  Sea Clutter

The algorithms currently available for estimating the
chaotic invariants of experimental time series work very well
indeed when the data are produced by mathematically derived
chaotic models (e.g., the Lorenz attractor), even in the presence
of additive white noise so long as the signal-to-noise ratio is
moderately high. Unfortunately, they do not have the necessary
discriminative power to distinguish between a deterministic
chaotic process and a stochastic process. We have found this
serious limitation for all the algorithms in our chaos analysis
toolbox. The estimates of the correlation dimension and
Lyapunov spectrum are summarized in Tables 1 and 2. Based
on these results, we may make the following observations:

(i) Examining the last column of Table 1 on the maximum-
likelihood estimate of the correlation dimension, we see
that for all practical purposes there is little difference
between the correlation dimension of sea clutter data and

that of their surrogate counterparts that are known to
stochastic by design.

(ii) Examining Table 2 on the estimates of Lyapunov spect
and the derived Kaplan-Yorke dimension, we again s
that a test based on Lyapunov exponents is incapable
distinguishing between the dynamics of sea clutter da
and their respective stochastic surrogates.

Similar results on the inadequate discriminative power of the
algorithms are reported in [63].

We thus conclude that although sea clutter is nonlinear,
chaotic invariants are essentially the same as those of
surrogates that are known to be stochastic. The notion
nonlinearity alone does not imply deterministic chaos;
merely excludes the possibility that a linear mechanism
responsible for the generation of sea clutter.

Table 2: Summary of Lyapunov exponents*

*Exp1 to Exp5 denote the estimated Lyapunov exponents, given
units of nats per sample.
  Exp sum denotes the sum of the Lyapunov exponents.
  Dimen denotes the Kaplan-Yorke dimension defined by

Horiz denotes the horizon of predictability, which is computed fro
the Lyapunov exponents. The horizon of predictability is given
units of sample period, which can be converted to time in seconds
dividing by the sampling rate. Note that data setL1 was sampled at 2
KHz, while data setsL2 andH were sampled at 1 KHz. Therefore, the
L1 horizon values listed in the table appear as approximately dou
the values forL2.

D. Dynamic Reconstruction

All along, the driving force for the work done by Haykin
and co-investigators has been the formulation of arobust
dynamic reconstruction algorithmto make physical sense of
real-life sea clutter by capturing its underlying dynamics. Su
an algorithm is essential for the reliable modeling of sea clut

Table 1: Summary ofZ-tests and correlation dimension

Data Set Z-statistic Maximum
likelihood
estimate
of
correlation
dimension

L1 0.1 5.1

L1surr1a -0.2 5.8

L1surr1b 0.0 5.8

L1surr1c -0.4 5.7

L1surr1d -0.4 5.6

L1surr2a -0.7 5.8

L2 -5.4 5.9

L2surr1a -2.8 5.2

L2surr1b -3.7 5.2

L2surr1c -3.4 5.5

L2surr1d -2.9 5.4

H -3.5 4.4

Hsurr1a -0.5 5.4

Hsurr1b 0.3 5.3

Hsurr1c -1.1 5.3

Hsurr1d -0.1 5.3

Hsurr2 -2.9 4.8

Set Exp 1 Exp 2 Exp 3 Exp 4 Exp 5
Exp
sum

Dimen Horiz

L1 0.1046 0.0411 -0.0154 -0.0864 -0.2670 -0.2231 4.16 37.41
L1surr1a 0.1184 0.0419 -0.0196 -0.1028 -0.3003 -0.2625 4.13 33.03

L1surr1b 0.1176 0.0443 -0.0129 -0.1003 -0.3130 -0.2643 4.16 33.26

L1surr1c 0.1152 0.0457 -0.0198 -0.1045 -0.2876 -0.2509 4.13 33.95

L1surr1d 0.1222 0.0473 -0.0149 -0.0947 -0.2867 -0.2269 4.21 32.02

L1surr2 0.1211 0.0445 -0.0235 -0.1163 -0.3418 -0.3159 4.08 32.30

L2 0.4472 0.2675 0.0606 -0.2448 -0.8735- 0.3429 4.61 8.75
L2surr1a 0.2304 0.1032 0.0315 0.2185 -0.6447 0.5611 4.13 16.98

L2surr1b 0.2395 0.1143 0.0235 0.2020 -0.6762 0.5479 4.19 16.34

L2surr1c 0.2352 0.1088 0.0267- 0.1970- 0.6847 0.5645 4.18 16.63

L2surr1d 0.2434 0.1176 0.0245- 0.1876 0.6708 0.5218 4.22 16.07

H 0.4058 0.2405 0.0644 0.1998 0.7674 0.2565 4.67 9.64
Hsurr1a 0.3521 0.1871 0.0193 0.2107 0.8399 0.4921 4.41 11.11

Hsurr1b 0.3836 0.2066 0.0221 0.2092 0.7885 0.3853 4.51 10.20

Hsurr1c 0.3877 0.2038 0.0160 0.2111 0.7994 0.4028 4.50 10.09

Hsurr1d 0.3670 0.1941 0.0085 0.2008 0.8027 0.4339 4.46 10.66

Hsurr2 0.3556 0.2007 0.0240 0.2248 0.7917 0.4361 4.45 11.00

DKY k
λ1

… λk+ +

λk+1
------------------------------,+=

λ1 λ2
… λk

…> > > >

k max i λ1
… λi 0>+ +,{ }=
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and the improved detection of a target in sea clutter. Successful
development of such a dynamical reconstruction algorithm was
also considered to be further evidence of deterministic chaos as
the descriptor of sea clutter dynamics.

To describe the dynamic reconstruction problem, with
chaos theory in mind, consider an attractor whose process
equation is noiseless, and whose measurement noise is
additive, as shown by the following pair of equations:

(9)

(10)

Suppose that we use the set of noisy observations

to construct the vector

(11)
whereτ is theembedding delayequal to an integer number of
time units, and D is the embedding dimension. As the
observations evolve in time, the vectorr (n) defines the
underlying attractor, thereby providing a fiducial trajectory.
The stage is now set for stating thedelay-embedding theorem
due to Takens [10], Mañé [11], and Sauer et al. [16]:

Given the experimental time series {y(n)} of
a single scalar component of a nonlinear
dynamical system, the geometric structure of
the hidden dynamics of that system can be
unfolded in a topologically equivalent
manner in that the evolution of the points

in the reconstructed state-
space follows the evolution of the points

in the original state space,
provided thatD > 2D0 + 1 whereD0 is the
fractal dimension of the system and the
vectorr (n) is related to the given time series
{ y(n)} by (11).

Ideas leading to the formulation of the delay-embedding
theorem were described in an earlier paper by Packard et al.
[9].

A key point to note here is that since all the variables of the
system are geometrically related to each other in a nonlinear
manner, as shown in (9) and (10), measurements made on a
single component of the nonlinear dynamical system contain
sufficient information to reconstruct the multidimensional state
x(n).

Derivation of the delay-embedding theorem rests on two
key assumptions:
• The model is noiseless; that is, not only is the state

equation (9) noiseless, but the measurement equation (10)
is also noiseless (i.e.,w(n) = 0).

• The observable data set {y(n)} is infinitely long.
Under these conditions, the theorem works with any delayτ so
long as the embedding dimensionD is large enough to unfold
the underlying dynamics of the process of interest.

Nevertheless, given the reality of a noisy dynamical model
described by (9) and (10), and given a finite record of

observations , the delay-embedding theorem m

be applied provided that a “reliable” method is used fo
estimating the embedding delayτ. According to Abarbanel
[64], the recommended method is to compute that particulaτ
for which the mutual information between {y(n)} and its
delayed version {y(n-τ)} attains its minimum value; and the
recommended method for estimating the embeddi
dimensionsD0 is to use the method of false nearest neighbor

A distinction must be made between dynami
reconstruction and predictive modeling.Predictive modelingis
an open-loop operation, which merely requires that t
prediction error (i.e., the difference between the present va
of a time series and its nonlinear prediction based on
prescribed set of past values of the time series) be minimized
the mean-square sense. Dynamic reconstruction is m
profound, in that its builds on a predictive model by requirin
closed-loop operation. Specifically, the predictive model
initialized with data drawn from the same process under stu
but not seen before, and then the model’s output is delayed
one time unit and fed back to the input layer of the mode
making room for this new input sample by leaving out th
oldest sample in the initializing data set. This procedure
continued until the entire initializing data set is complete
disposed of. Thereafter, the model operates in anautonomous
manner, producing an output time series learned from the d
during the training (i.e., open-loop predictive) session.

It is amazing that dynamic reconstruction, as describ
herein, works well for time series derived from mathematic
models of deterministic chaos, even when the time series
purposely contaminated with additive white noise of relative
moderate average power (see, for example, [65]).

Unfortunately, despite the persistent use of differe
reconstruction procedures involving the use of a multilay
perceptron trained with the back-propagation algorithm [22
regularized radial-basis function (RBF) networks [66] an
recurrent multilayer perceptrons trained with the extend
Kalman filter [65], the formulation of a reliable procedure fo
the dynamic reconstruction of sea clutter based on the del
embedding theorem has eluded us. The key question is why
feasible answer is offered in sub-section E.

Serious difficulties with the dynamic reconstruction of se
clutter prompted the authors of this paper in September 2000
question the validity of a chaotic model for describing th
nonlinear dynamics of sea clutter, despite the high
encouraging results summarized in Section III. Indeed, it w
because of these serious concerns that a complete
examination of the nonlinear dynamical modeling of sea clutt
was undertaken, as detailed in Section IV. However, befo
moving onto that section, we conclude the present discuss
on chaos by highlighting some importantlessonslearned from
our work on the application of deterministic chaos to se
clutter.

x n 1+( ) f x n( )( )=

y n( ) h x n( )( ) w n( )+=

y n( ){ }n=1
N

r n( ) y n( ) y n-τ( ) … y n D 1–( )– τ( ), ,,[ ]T=

r n( ) r n+1( )→

x n( ) x n+1( )→

y n( ){ }n=1
N
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E. Chaos, a Self-fulfilling Prophecy?

Chaos theory provides the mathematical basis of an
elegant discipline for explaining complex physical phenomena
using relatively simple nonlinear dynamical models. As with
every scientific discipline that requires experimentation with
real-life data, we clearly needreliable algorithms for
estimating the basic parameters that characterize the physical
phenomenon of interest, given an experimental time series. As
already mentioned, there are two invariants that are basic to the
characterization of a chaotic process:
• Correlation dimension
• Lyapunov exponents

Unfortunately, state-of-the-art algorithms for estimating
these invariants do not have the necessarydiscriminative power
to distinguish between a deterministic chaotic process and a
stochastic process. For the experimenter who hopes his/her
data qualify for a deterministic chaotic model, the results of a
chaotic invariant analysis may end up working as a self-
fulfilling prophecy, indicating the existence of deterministic
chaos regardless of whether the data are really chaotic or not.
The stochastic process could be colored noise, or a nonlinear
dynamical process whose state-space model includes
dynamical noise in the process equation. As pointed out in
Sugihara [67], when we have noise in both the process and
measurement equations of a nonlinear dynamical model, there
is unavoidable practical difficulty in disentangling the
dynamical (process) noise from the measurement noise to
reconstruct an invariant measure. Specifically, in the estimation
of Lyapunov exponents, it is no longer possible to compute
meaningful products of Jacobians from the experimental time
series because the invariant measure is contaminated with
noise.

How do we explain the possible presence of dynamical
noise in the state-space model of sea clutter? To answer this
question, we first need to remind ourselves that ocean
dynamics are affected by a variety of forces, as summarized
here [50]:
• Gravitational and rotational forces, which permeate the

entire fluid, with large scales compared with most other
forces.

• Thermodynamic forces, such as radiative transfer, heating,
cooling, precipitation, and evaporation.

• Mechanical forces, such as surface wind stress,
atmospheric pressure variations, and other mechanical
perturbations.

• Internal forces - pressure and viscosity - exerted by one
portion of the fluid on other parts.

With all these forces acting on the ocean dynamics, and
therefore directly or indirectly influencing radar backscatter
from the ocean surface, three effects arise:
1. Evolution of the hidden state characterizing the underlying

dynamics of sea clutter due to the constant state of motion
of the ocean surface.

2. Generation of some form of dynamical noise,
contaminating this evolution with time, due to the natural
rate of variability of the forces acting on the ocean surface.

3. Imposition of a nonstationary spatio-temporal structure
the radar observable(s).

Hence, given the physical reality that in addition t
measurement noise there is dynamical noise to deal with, a
the fact that there is usually no prior knowledge of th
measurement noise or dynamical noise, it is not surprising t
the dynamic reconstruction of sea clutter using experimen
time series is a very difficult proposition.

IV.  HYBRID AM/FM MODEL OF SEA CLUTTER

In Section III, we have expressed doubts on the validity
the deterministic chaos approach as the descriptor of
clutter. In this section, we take a detailed look at sever
experimental data sets to explore new ways to model s
clutter. Apart from the classical approaches reviewed in Sect
II, one source of inspiration is the recent work of Gini an
Greco [68], who view sea clutter as a fast ‘‘speckle’’ proces
multiplied by a “texture” component which represents th
slowly varying mean power level of the data---caused by lar
waves passing though the observed ocean patch. They m
the speckle as a stationary compound complex Gauss
process, and the texture as a harmonic process. What we
find is that the relationship between the slow and fast varyi
process is much more involved than what has been assume
far in the literature. In particular, we find that the slowly
varying component does not only modulate the amplitude
the speckle, but also its mean frequency and spectral width.

A. Radar Return Plots

We use the data setsL2 and H from Appendix B. The
analysis starts by looking at the radar return plots of these d
sets, shown in Fig. 5. These plots show the strength of the ra
return signal (color-axis) as a function of time (x-axis) and
range (y-axis). A red color indicates a strong return, which is

Figure 5: Radar return vs. time and range, VV polarization, of (a) da
setL2 (low sea state); and (b) data setH (high sea state). The color

axis shows log , where is the complex envelope of the receiv

signal. The units of are normalized and the color axis changes fr
blue (low) via green to red (high).
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associated with wave crests. The diagonal red stripes in both
plots show that the wave crests move, with increasing time,
towards a decreasing range, or towards the radar. Indeed we see
from Appendix B that the wind and radar beam point in almost
opposite directions. If we look at a single range bin, i.e., along
a horizontal line in the radar return plots, we see that the
strength of the return signal is roughly periodic, with a period
in the order of 4 to 8 seconds, corresponding to the period of
the gravity waves (see Section II). In Figs. 1a, b, c, such a
single range bin is plotted against time, they-axis now being
return strength (amplitude of the received signal). The periodic
behavior is less pronounced due to the wild short-term
fluctuations of the signal, which are caused by Rayleigh fading.

B.  Rayleigh Fading

Rayleigh fading arises when a number of complex
exponentials of slightly different frequency are added together.
Figure 6 shows the magnitude and instantaneous frequency of
the sum , withf1 = 1,

f2 = 1.1,a1 = 1, anda2 is varied;i denotes the square root of -1.
In Fig. 6(a),a2 is equal toa1, and in (b) it is 10% larger. The
figure illustrates the typical upside down U shape of the
magnitude of a Rayleigh fading process, with a periodTRayleigh

that follows
(12)

Figure 6: Magnitude (a,b) and instant frequency (c,d) of the sum of
two complex exponentials: exp(i2πt) + exp(i2π1.1t); a,c; exp(i2πt) +
1.1 exp(i2π1.1t) (b,d). Instant frequency is computed as the difference
between the phase of subsequent samples, after unwrapping the phase
to remove 2π jumps.

Looking at the close-up of our data in Fig. 7, we see that both
the magnitude and instantaneous frequency have the typical
characteristics of Rayleigh fading, although in Section C we

will find that most spikes in the time series are
actually caused by receiver noise.

Why does Rayleigh fading occur? The answer lies in the
independent scatterer model that Jakeman and Pusey [27] first

used to derive a physical justification for the use of theK-
distribution (see Section II). If we think of a patch of ocea
illuminated by the radar at a given time, according to th
model the received signal will be dominated by a small numb
of independent scatterers, each moving at its own velocity. W
make the additional restriction that, at least for the sho
duration of a single sample time, each scatterer has its o
constant velocity with respect to the radar. The received sig
can then be written as:

(13)

where is the RF angular frequency of the radar (equ

9.39 GHz for the IPIX radar),N is the number of independent
scatterers,ak is proportional to the effective radar cross-sectio

of scattererk, and and are respectively the

Doppler frequency and phase of scattererk at time t0. After

removing the carrier wave by multiplying by , we se
that (13) is indeed a sum of complex exponentials with slight
different frequencies, thereby resulting in Rayleigh fading. T
frequencies are related to the physical speed of the scattere
(8).

Figure 7: (a) Close-up of the radar return signal of Fig. 1b, and (b) c

responding instant frequency . It is computed

where the phaseφ is first unwrapped to remove jumps larger thanπ,
and∆t is the sampling time of 1 ms.

Now that we have established the Rayleigh fadin
characteristics of sea clutter amplitude data, we go back to (
which relates, for the case of two complex exponentials, t
period of the amplitude signal to the frequency difference
the two exponentials. Sea clutter has much more than t
complex exponentials, and they are constantly chang
frequency. But as a coarse approximation, (12) may still
useful. As a rough estimate for the averageTRayleigh of sea
clutter, we use the average cycle time (ACT) of the dat
subtract the median of the signal and take the average t

x a1 i2π f 1t( ) a2 i2π f 2t( )exp+exp=

TRayleigh 1 f 1 f 2–⁄ .=

φ̇ dφ dt⁄=

y t( ) iωRFt( ) ak iωD k, t-t0( ) φt0,k+( )exp

k=1

N

∑exp=

ωRF

ωD k, φt0 k,

e iωRFt–
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between two upward zero crossings. For the left-hand term of
(12) we need to estimate |f1 - f2|, the frequency variability of sea
clutter. This we estimate by taking the measured instantaneous
frequency and computing its normalized median absolute
deviation (NMAD). The NMAD is a robust estimate of the
signal’s standard deviation, ignoring the spikes. It is computed
as

(14)

For the example of Fig. 7, we have , and

. If we take twice the standard deviation
as our measure of variability, then the result satisfies (12), as

. In Fig. 8, we look at how the two quantities

2NMAD and 1/ACT(|x|) evolve with time. We use a
moving window of 1000 samples (1 second). For the high sea
state, the two curves almost overlap, in agreement with (12).
For the low sea state, the curves do not overlap but they follow
the same trends.

Figure 8: 1/ACT (solid line) and 2NMAD (dotted line) vs.
time, computed on a 1000 sample sliding window basis, for (a) data
setL2 and (b) data setH.

It is interesting to also try to link the variability of to
itself. If we could do this, then even with an inexpensive non-
coherent radar, using only the envelope of the received signal,
the radar could provide a rough estimate of the speed of the
observed waves. This is not the focus of this paper, but the
strong correlation seen in Fig. 11d shows the viability of this
approach.

C.  Time-Doppler Spectra

Since the independent scatterer model tells us that the
received signal is the sum of a number of complex
exponentials, it is most appropriate to describe the signal in
terms of its Fourier spectrum. But, as waves move along the
observed ocean patch, we expect the number and strength of

the scatterers to vary. Therefore, we again use a slid
window, this time of length 512 (0.5s) to compute a time
varying frequency spectrum. When the frequency is conver
into Doppler velocity using (8), it becomes the time-Dopple
spectra of Figs. 2a, b, c. The plots are very revealing, show
that the Doppler frequency fluctuations are a lot stronger
the higher sea-state clutter. Note also how the spectral width
the time-Doppler plots varies with time; this variation follow

the same trend as the NMAD signal of (14), which wa
introduced in sub-section B on Rayleigh fading.

The spectrogram contains many frequencies that are o
activated by the receiver noise part of the data. We estima
the receiver noise level by comparing the total power of th
signal to the power in the part of the Doppler spectrum belo
-4 m/s. The signal-to-noise ratio is found to be 17 dB for da
setL2, and 31 dB for data setH, the difference being caused by
the difference in range and the reduced overall power of low
sea-state clutter.

The noise estimates are very useful to estimate the varia
of the signals we derived from the data. For example, we c

see immediately that most of the spikes in the time ser
occur when the signal drops below the noise floor. And what

the variance of the signal? If the magnitude of the signal

well above the noise floor, can be estimated usin

the formula (see Fig. 9)

,

where is the receiver noise level. From this estimate,

appears that the NMAD( ) signal in Fig. 8a (data setL2) is
dominated by receiver noise, whereas in Fig. 8b (data setH) it
is dominated by the clutter signal. For data set , this mea

that we now expect an inverse relationship between NMAD(
and the amplitude of the signal. This relationship is clear
visible if we compare the solid line in Fig. 11a to the dotte
line in Fig. 11b.

Figure 9: If the magnitude of the amplitude signal is high compared

the receiver noise level, the error in the estimation of the angleφ
can be approximated by the tangential component of the recei
noise, divided by the magnitude of the signal. If the receiver noise

uncorrelated, the variance of  is .
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D.  Amplitude Modulation, Frequency Modulation, and More

Almost invariably, models for sea clutter distinguish
between the slow time scale of the gravity waves, and the fast
time scale of the capillary waves. A typical approach is that of
Conte et al. [43], consisting of a colored noise process that is
amplitude-modulated by a slowly varying intensity component.
Figure 10 shows the time-Doppler spectrum for such data
(courtesy Alan Thomson). The results in the previous sections
teach us that there is a much more intricate relationship
between the fast- and the slow-varying processes.

Figure 10: Time-Doppler spectrum of 50 seconds of data synthesized
with the method of Conte, Longo and Lops [47]. (Data providced by
Alan Thomson.)

Figure 11: (a,c) Lowpass filtered amplitude (1 second averaging);

(b,d) Low-pass filtered instant frequency (solid line) and

NMAD( ) (dotted line). (a,b) data setL2. (c,d) data setH.

When a large wave passes through the ocean patch under
surveillance, it will first accelerate and then decelerate the
water on the ocean surface. The tilting of the ocean surface by
the wave causes the amplitude modulation. Even if scatterers

arise mostly on the crest of the wave, the wave will cause
cyclic motion of the velocity of the scatterers. This motion
widely recognized, but its consequence, namely, a frequenc
modulation of the speckle component, has been neglected. A
there is more. When the mean velocity of the scatterers is h
at a given instant, then the spread around that mean is also h
We can now explain why almost invariably we found se
clutter to be nonlinear, when we presented the results in Ta
1. Recognizing that amplitude modulation is a linear form
modulation but frequency modulation is not [69], we expect th
value ofZ to become more negative as the amount of frequen
modulation increases. Figure 12 confirms this qualitati
relationship, by plotting theZ-value versus the amount of
frequency modulation. Apart from the datasetsL1, L2 andH,
the figure uses an additional 75 datasets from our sea clu
database, measured at a wide variety of experimen
conditions. It is no surprise that the surrogate data sets use
Table 1 are less nonlinear than their original counterparts, sin
the random phase shifting partially destroys the frequen
modulation. The typical “breathing” seen in time-Dopple
plots, such as the ones in Fig. 2, shows that not only the me
of the velocity spectrum, but also its spectral width a
modulated. Moreover, in some cases, the velocity spectr
even has a bimodal distribution (around time = 45 to 50 s
Fig. 2b); recent work of Walker [48] shows that this is mos
likely caused by a breaking wave.

Figure 12:Z-value vs. NMAD( ), computed for 78 datasets measure
by the IPIX radar at various experimental conditions.

So far we have identified four different processes acting
the dynamics of the speckle component: amplitude modulatio
frequency modulation, spectral-width modulation, and bimod
frequency distributions due to breaking waves. All thes
processes, which have the slow time scale of gravity wav
need to be specified in order to synthesize artificial radar da
In Fig. 11, we look for possible correlation between the vario
types of modulation. The relation between the amplitud
modulation and frequency modulation seems weak (comp
solid lines in Fig. 11a to 11b, and Fig. 11c to 11d). Figure 11
shows that there is a strong correlation between the freque

modulation ( averaged over 1s) and the spectral-wid

modulation, measured by NMAD( ). This correlation is no
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confirmed by the equivalent plots for low sea-state in Fig. 11b,
but as argued in Section C that is due to receiver noise.

E.  Modeling Sea Clutter as a Nonstationary Complex
     Autoregressive Process

So far our results have not made the sea clutter synthesis
much easier--it seems we almost have to provide the entire
time-Doppler spectrum to get a complete signature of the
observed data. As a first step towards a practical algorithm, in
this section we compress the time-Doppler spectrum into only
a few complex parameters per time slot, and at the same time
we make it suitable for time-series generation. We argue as
follows, using observations from the preceding discussion:
(1) On time-scales shorter than several seconds, sea clutter can

be described as the sum of complex exponentials.
(2) A sum of complex exponentials is well described in terms

of its Fourier spectrum.
(3) The Fourier spectrum of a dynamical system can often be

approximated most efficiently by anautoregressive (AR)
process.

This brings us to the concept of a time-varying complex AR
process. We take a 1 second window (1000 samples), slide it
through data setH (pertaining to a higher sea-state) with small
time increments, and each time we fit a complex AR process to
the data. We search for the lowest order time-varying AR
model that approximates the short-time Fourier transforms

Figure 13: Time-Doppler spectra of data synthesized by a sliding AR
process of order 1 (a), 2 (b), and 3 (c). The three plots have identical
color axis limits. The lighter background color in plot (a) is caused by
the larger residual error of the sliding AR(1) model.

(vertical lines in the time-Doppler spectrum) well. When we
increase the order from one to four, the standard deviation of
the residual error, averaged over time, decreases: 0.23, 0.11,
0.091, 0.086, in units of signal standard deviations. In the same
units, the receiver noise as estimated from the time-Doppler
spectrum is 0.061. The improvement with model order is very

clear from Fig. 13 which shows time-Doppler spectra o
synthesized clutter, using time-varying AR processes of ord
1, 2 and 3, denoted as AR(1), AR(2), and AR(3), respective
The data are generated according to the difference equation

(15)

where all variables are complex,aj,< t > are the AR coefficients
at time <t > with j = 1,2,...,K, the brackets indicating that they
change on a slow time scale only,K is the model order, and
et,< t> is the noise process having a time-varying varian

.

The AR model of order 1 is clearly insufficient to describ
sea clutter in good detail, but it is by far the easiest to analy
in physical terms. It has three independent parameters that v
slowly with time: (1) the amplitude ofa1,< t >, (2) the angle of

a1,< t >, and (3) the variance of the noise, . Figure 14

shows how these three independent parameters are couple
the three main types of modulation mentioned in Section D.

Figure 14: Amplitude, frequency, and spectral widt
modulation exhibited by the nonstationary complex AR(1) proces
trained on a 1000-sample sliding window of data setH. (a) Lowpass
filtered amplitude of data set H and of the model

, vs. time (plots overlap almost completely)

(b) 1 second median filtered and vs. time,fRF is

the pulse repetition frequency of 1000 Hz (plots overlap almo

completely). (c) NMAD (dotted line) and spectral width of the

model, computed by  (see [78]) vs. time.
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Indeed, we could rewrite the nonstationary AR(1) process into
an equivalent stationary AR(1) process, modulated in
amplitude, frequency, and spectral width. Unfortunately, the
sliding AR(1) does not provide a good enough description of
the data and we need to investigate in future work what
physical mechanism it is that the AR(2) and AR(3) have
captured but the AR(1) has not.

V. DISCUSSION AND CONCLUSIONS

Sea clutter, referring to radar backscatter from an ocean
surface, is a nonstationary, complex, nonlinear dynamical
process with a discernible structure that exhibits a multitude of
continuous-wave modulation processes: amplitude modulation,
frequency modulation, spectral-width modulation, and bimodal
frequency distribution due to breaking waves. The modulations
are slowly varying (in the order of seconds) functions of time.
The amplitude modulation is clearly discernible in the sea-
clutter waveform, regardless of the sea state or whether the
ocean waves are moving away from the radar or coming
towards it. The frequency modulation and variations in spectral
width and spectral shape become clearly observable when the
nonlinear nature of sea clutter becomes pronounced. This
happens when the sea state is higher or the ocean waves are
coming towards the radar. These observations on the
nonlinearly modulated nature of sea clutter have become clear
from the detailed experimental study reported in Section IV.
This study paves the way for a new phemenological approach
to the modeling of sea clutter in terms of all its modulating
components. In subsequent work, we will extend the work to
the full body of experimental data that we gathered on the East
Coast of Nova Scotia in 1993. We have already developed a
website that will also enable others to use this valuable
resource and contribute to this exciting field [70].

A. State-Space Theory

The adoption of astate-space modelfor sea clutter is a
natural choice for describing the nonstationary nonlinear
dynamics responsible for its generation. Most importantly,time
features explicitly in such a description.

The challenge in the application of a state-space model to
sea clutter is basically two-fold:
1. The formulation of the process and measurement

equations (including the respective dynamical and
measurement noise processes), which are most appropriate
for the physical realities of sea clutter.

2. The use of a computational procedure, which is not only
efficient but also most revealing in terms of the
phenomenological aspects of sea clutter.

Each of these two issues is important in its own way.
In light of the material presented in Sections III and IV,

and contrary to conclusions reported in earlier papers [19-23],
we have now come to the conclusion that sea clutter is not the

result of deterministic chaos.2 By definition, the process
equation of a deterministic chaotic process is noise-free. In
reality, however, the process equation of sea clutter contains

dynamical noise due to the fast fluctuations of the vario
forces, which act on the ocean surface. As pointed out by He
and Stark [73], there is no physical system that is entirely fr
of noise, and no mathematical model that is an exa

representation of reality.3 We must therefore expect noise in
both the process and measurement equations of sea clu
with two important consequences:
• There is unavoidable practical difficulty in disentanglin

the dynamical noise from the measurement noise when
try to reconstruct an invariant measure [67]. This may b
the reason for why currently available algorithms fo
estimating chaotic invariants are incapable o
discriminating between sea clutter and its stochas
surrogates.

• The delay-embedding theorem for dynamic reconstructi
is formulated on the premise of a deterministic proces
Although, from an experimental perspective, it is possib
to account for the presence of measurement noise throu
a proper choice of embedding delay and embeddi
dimension [64], it is difficult to get around the unavoidabl
presence of dynamical noise in the process equation. T
may explain the reason for why it is very difficult to build a
predictive model for sea clutter that solves the dynam
reconstruction problem in a reliable manner.
Next, addressing the issue of a computational proced

for studying the nonlinear dynamics of sea clutter, the use o
time-varying complex-valued autoregressive (AR) model,
described in Section IV, is attractive for several reasons:
• An AR model of relatively low order (4 or 5) appears to

have the capability of capturing the major features of th
nonlinear dynamics of sea clutter.

• The AR model lends itself to a “phenomenological” rathe
than “black-box” analysis of sea clutter.

In a related way, it is noteworthy that, starting from the mi
1970s and for much of the 1980s, the first author of this pap
and other co-investigators showed that a complex-valued
model of relatively low order (4 or 5) provides a reliable
method for modeling the different forms of coherent rad
clutter, namely, ground clutter, rain clutter, and clutter due to
flock of migrating birds, in an air traffic control environmen
[31-34]. It is ironic that we now find that a complex-valued AR
model of similar order is also capable of modeling sea clutte

2We do not rule out the possibility of stochastic chaos or
mixture of several deterministic chaos as well as stochas
mechanisms being responsible for generating the nonlin
dynamics of sea clutter. The notion ofstochastic chaosand
related issues are discussed in [67,71,72]. However, we do
have the tools to distinguish between stochastic chaos a
stochastic processes using real-life data.

3Heald and Stark [73] describe a Bayesian procedure
estimating the variance of dynamical noise for the case wh
the noise processes in the nonlinear state-space model
additive.
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B. Nonlinear Dynamical Approach versus Classical
      Statistical Approach

The main focus of the classical approach, as discussed in
Section II, has been to model (and hopefully explain) the
amplitude statistics of sea clutter. The emphasis is on point
statistics, with no attention given to the temporal dimension.
Some efforts have simply involved empirical fitting of
distributions to the observed clutter data. Other studies have
tried to provide some theoretical basis for the selection of the
clutter behavior in order to make the problem mathematically
tractable. For example, the assumption that we have discrete,
independent scatterers permits the application of random-walk
theory in developing theoretical solutions. This approach was
used in the original development of theK-distribution [27].
However, the applicability and efficiency of the model is
determined by the validity of the assumptions made in its
development. The appeal of the compoundK-distribution
model is that it can be cast as the overall distribution for the
product of two terms -- one Rayleigh-distributed and the other
Chi-distributed -- which, in turn, have been found to
empirically fit the two time scales of sea clutter data in many
cases. The main motivation for the development of clutter
amplitude statistical models has been in their use for estimating
the performance of various target-detection algorithms. The
algorithms do not make use of the temporal properties of the
clutter per se; rather, they seek to adapt the decision thresholds
in response to changes in the point statistics of the clutter
signal.

By contrast, the nonlinear dynamical approach, advocated
in this paper, accounts for time in an explicit manner.
Moreover, the explicit need for a statistical model is avoided by
using real-life data to compute the parameters of a complex AR
model or state-space model of sea clutter in an on-line fashion;
the complex nature of the model parameters is attributed to the
in-phase and quadrature components of clutter data generated
by a coherent radar. In this alternative approach, the
information content of the input data is transferred directly to
the model parameters evolving over time.

C. New Sequential Learning Models

From a synthesis point of view, in this paper we have
focused attention on a time-varying complex AR model for sea
clutter. However, there is merit to the idea of exploring the
application of new sequential learning models to sea clutter to
see what difference, if any, they can make to our improved
understanding of the nonlinear dynamics of sea clutter. In this
context, two different procedures stand out as being noteworthy
of attention:
• Derivative-free state estimation,which is inspired by

extended forms of classical Kalman filters.
• Sequential Bayesian estimation using a class of sequential

Monte Carlo (SMC) methods, which are known as particle
filters, survival of the fittest, and condensation.

The derivative-free state-estimation procedures a
designed to overcome serious limitations of the extend
Kalman filter when the problem of interest involves the stud
of a nonlinear dynamical system. The idea here is to elimina
the need for computing Jacobians and Hessians (both of wh
involve partial derivatives) by using multiple forward
propagations [74, 75], or alternatively using Sterling’s formu
for approximating a nonlinear function over an interval o
selected length [76].

The sequential Bayesian estimation procedure is perh
more powerful in that it permits us to tackle a very comple
nonlinear dynamical problem that was previously unsolve
namely, the problem of estimating the parameter
hyperparameters (i.e., covariances of the dynamical a
measurement noise components of the state-space model),
model structure of parametric models evolving over time [77
This is indeed the very essence of using experimental tim
series to construct a state-space model for sea clutter. The o
drawback of this second approach is that it is computationa
intensive, yet it lends itself to straightforward implementatio
on a parallel computer.
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APPENDIX A - DESCRIPTION OF THE IPIX RADAR

The IPIX radar is a transportable experimental radar system
designed and constructed at McMaster University. It was built
specifically with research in mind, and is very flexible in its
design and configuration. Begun in the late 1980s, the radar
underwent major redesign in 1991, and further upgrade in
1995. Its major features are listed in Table A-1.

Table A-1.  Major features of the IPIX radar system

Transmitter
• 8 KW peak power TWT
• H or V polarization, switchable pulse-to-pulse
• frequency fixed (9.39 GHz) or agile over 8.9 to 9.4 GHz
• pulse width 20-200 ns (20 ns steps), 200 ns to 5000 ns (200

ns steps)
• pulse repetition frequency up to 20 KHz, limited by duty

cycle (2%) or polarization switch (4 KHz)
• pulse repetition interval, configurable on a per-pulse basis

Receiver
• fully coherent reception
• 2 linear receivers; H or V on each receiver (usually one H,

one V for dual-polarized reception)
• instantaneous dynamic range > 50dB
• 8-bit, or 10-bit with hardware integration, sampling
• 4 A/Ds: I and Q for each of 2 receivers
• range sampling rate up to 50 MHz
• full-bandwidth digitized data saved to disk, archived onto

CD

Antenna
• 2.4 m diameter parabolic dish

• pencil beam, beamwidth 0.9o

• 44 dB gain
• sidelobes < -30 dB
• cross-polarization isolation
• computer controlled positioner

• -3o to +90o in elevation

• rotation through 360o in azimuth, 0 to 10 rpm

General
• radar system configuration and operation completely under

computer control
• user operates radar within an IDL environment

APPENDIX B - SPECIFICATIONS OF THE THREE SEA CLUTTER

SETS USED IN THIS PAPER

The radar data were measured in 1993 from a clifftop ne
Dartmouth, Nova Scotia, at a height of 30 m above the me
sea level, facing an open view of the Atlantic Ocean of abo

130o

Data set L1: low sea state, sampling freq. 2000 Hz

Date and time (UTC)
RF frequency

Pulselength
Pulse repetition frequency

Radar azimuth angle
Grazing angle

Range
Range resolution

Radar beam width
Width of resolution cell
Significant wave height

Wind

November 18, 1993, 13:13
9.39 GHz
200 ns
2000 Hz
190 Deg.
1.4 Deg.
1200-1410 m, sampled as 8 rangebins
30 m
0.9 Deg.
19 - 23 m
0.79 m
24 km/h, coming from 340 Deg.

Data set L2: low sea state, sampling freq. 1000 Hz.

Date and time (UTC)
RF frequency

Pulselength
Pulse repetition frequency

Radar azimuth angle
Grazing angle

Range
Range resolution

Radar beam width
Width of resolution cell
Significant wave height

Wind

November 17, 1993, 11:57
9.39 GHz
200 ns
1000 Hz
135 Deg.
0.4 Deg.
4200-4410 m, sampled as 14 rangebins
30 m, but sampled at 15 m intervals
1 Deg.
73 - 77 m
0.84 m
0 km/h, coming from 230 Deg.

Data set H: High sea state, sampling freq. 1000 Hz.

Date and time (UTC)
RF frequency

Pulselength
Pulse repetition frequency

Radar azimuth angle
Grazing angle

Range
Range resolution
Radar beamwidth

Width of resolution cell
Significant wave height

Wind

November 17, 1993, 20:49
9.39 GHz
200 ns
1000 Hz
190 Deg.
1.9 Deg.
900-1110 m, sampled as 14 rangebins
30 m, but sampled at 15 m intervals
1 Deg.
16 - 19 m
1.82 m
22 km/h (gusts to 39), coming from 220
Deg.
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