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Abstract - Nonlinear dynamics are basic to the characterization dhfluenced by two perspectives that are in a state of “tension”
many physical phenomena encountered in practice. Typically, we aggdth each other:
given a time series of some observable(s), and the requirement issto  \Mathematical tractability
uncover the underlying dynamics responsible for generating the time Physical considerations
series. This problem becomes particularly challenging when the

process and measurement equations of the dynamics are botr]. . - -
) . ) o I3 linear and the dynamical noisgn) and measurement noise
nonlinear and noisy. Such a problem is exemplified by the case stu

of sea clutter, which refers to radar backscatter from an ocean surfa (n) a_re bOt,h additive and modgled a§ |ndependenF.Whlte
After setting the stage for this case study, the paper prese,%aus&aq noise processésnder this speC|a_I set of condltlon.s,
tutorial reviews of (1) the classical models of sea clutter based on th@€ solution to the problem of uncovering the underlying
compoundK-distribution and (2) the application of chaos theory to seglynamics of the system is to be found in the celebréiaidnan
clutter. Experimental results are presented that cast doubts on chaofilker [1]. In a very clever way, the Kalman filter solves the
a possible nonlinear dynamical mechanism for the generation of speoblem by exploiting the fact that there is a one-to-one
clutter. Most importantly, experimental results show that on timescalgrrespondence between the given sequence of observable
smaller than a few §econds, sea clutter is very well desc_ribed assamples and the sequencerufovationsderived from one-step
complex autoregressive process of order 4 or 5. On larger timescalggeictions of the observables; the innovation is defined as the
grawa or swell waves cause this process to be modulated in bo fference between the observatigin) and its minimum
amplitude and frequency. It is shown that the amount of frequenctgﬁean_S uare error prediction given all pbrevious values of the
modulation is correlated with the nonlinearity of the clutter signal. q. P . . 9 . P
The dynamical model is an important step forward from the classicglbservatlon up to and including timel. .
statistical approaches, but it is in its early stages of development. Unfortunately, many of the dynamical systems
encountered in practice araonlinear which makes the
Keywords: Nonlinear dynamics. Radar. Sea clutter. Compound Kproblem of uncovering the underlying dynamics of the system
distribution. Chaos. Short-time Fourier-transform. Time-Dopplera much more difficult proposition. Consider, for example, the

Mathematical tractability is at its easiest when the system

Modulation. Complex autoregressive models. time series displayed in Fig. 1. These time series, made up of
sampled signal amplitude versus time, were obtained by an
l. INTRODUCTION instrument-quality, multi-function radar, which was configured

to monitor a patch of the ocean surface at a low grazing angle;
Nonlinear dynamicsare basic to the characterization of Appendix A presents a brief description of the radar. The radar
many physical phenomena encountered in practice. Typicallyas mounted at a site in Dartmouth, Nova Scotia, on the East
we are given a time series of some observable(s), and ta®ast of Canada, at a height of about 30m above the sea level.
requirement is to uncover the underlying dynamics responsibithe radar was operated in @welling modeso that the
for generating the time series. In a fundamental sense, thgnamics of thesea clutter(i.e., radar backscatter from the
dynamics of a system are governed by a pair of nonlinegcean surface) recorded by the radar would be entirely due to
equations: the motion of the ocean waves and the natural motion of the sea
* A recursive process equationwhich describes the surface itself. Throughout the paper we will make extensive use
evolution of the hidden state vector of the system withyf three different data sets. Two data sets were measured at low
time: wave-height conditions (0.8 m) and are labellddandL2. For
x(n+1) = f(n,x(n),v(n)) (1) the third data set, labelldd, the wave height was higher (1.8
where the vectox(n) is thestateat discrete tima, v(n) is  m); the characteristics of these data sets are summarized in
the dynamicalor process noiseandf is a vector-valued Appendix B.
nonlinear function. From the viewpoint of dynamical systems as characterized
« A measurement equatipwhich describes the dependenceédy (1) and (2), we may identify six potential sources
of observations (i.e., measurable variables) on the state:responsible for the difficulty in understanding the complex

y(n) = h(n, x(n), w(n)) (2) @appearance of the time series in Fig. 1:

wherey(n) is theobservation@assumed to be scalagy(n) () The dimensionality of the state. .

is themeasurement noisandh is a nonlinear function. (i) The funct|o.nf governing the nonlinear evolution of
The explicit dependence of both nonlinear functibasdhon the state with time. _ _
time n emphasizes the time-varying nature of the dynamicdli) ~ The possible —presence of dynamical noise
system. complicating the evolution of the state with time.

Equations (1) and (2) define tratate-space modaif a (iv) The function h governing dependence of the radar
nonlinear, time-varying dynamical system in its most general observable on the state.
form. The exact form of the model adopted in practice is



(v) The unavoidable presence of measurement noise damused interest in deterministic chaos as a possible mechanism
to imperfections in the instruments used to record théor explaining the underlying dynamics of sea clutter [19-23].
sea clutter data. Unfortunately, for reasons that will be explained later in

(vi) The inherently nonstationary nature of sea clutter.  Section Ill, currently available state-of-the-art algorithms used

Many, if not all, of these parameters/processes are unknown, estimate the chaotic invariants of sea clutter produce

which makes the uncovering of the underlying dynamics of seaconclusive results, which cast serious doubts on deterministic

clutter into a challenging task. chaos as a possible mathematical basis for the nonlinear
dynamics of sea clutter. This conclusion has been reinforced
further by the inability to design a reliable algorithm for the
dynamic reconstruction of sea clutter.

All along, our own primary research interests in sea clutter
have been driven by the following issues of compelling
practical importance:

* Sea clutter is a nonlinear dynamical process withe
playing a critical role in its characterization. By contrast,
much of the effort devoted to the characterization of sea
clutter during the past fifty years has focused on the
statistics of sea clutter, with little attention given to time
[24-30], other than adapting to time-varying statistical
parameters.

* Understanding the nonlinear dynamics of sea clutter is not
only important in its own right but it will have a significant
impact on the joint detection and tracking of a point target
on or near the sea surface. Such targets include a low-
flying aircraft, small marine vessels, and floating hazards
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Figure 1: Radar return plots: (a) data k& VV polarization; (b) data - tpig haper is written with these objectives in mind, given what

setH, WV polarization; and (c) data seft HH p°|a”.zat'0n'*| N th_e we currently know about the statistics and dynamics of sea
magnitude of the complex envelope of the return signal. The units of

are normalized. clutter. . . .
The rest of the paper is organized as follows. Section Il

Random-looking time-series, such as those of Fig. 1 cdyesents a tutorial review of the classical models of sea clutter,

be modeled at various levels of sophistication. The crude@fth Primary emphasis on the compourk-distribution.

form is to look at the probability density function (pdf) of theSection [l presents a cri_tical review of r_es_ults reported in_the
data, ignoring any type of correlation in time. At the next |eve|!|terature on the application of deterministic chaos analysis to

correlations in time are modeled by a linear or higher ordeiea clutter. The discussion presented therein concludes that the

relationship, and the residuals are described by their pdf. @Scovery that a real-worléxperimentatime series is chaotic
third level of sophistication is sometimes possible for systen{iS @ high risk of being aelf-fulfilling prophecyWe justify
that exhibitlow-dimensional dynamicf2-7]. For a subset of this statement by revisiting earlier claims that sea clutter is the
these systems, namely, deterministic chaotic systems, the tinjgSult of a deterministic chaotic process. In Section IV, we go

series can be described completely in terms of nonlineQ@ck to first principles in modulation theory and present new
evolutions, and, assuming a perfect model and noise_frgéperimental results demonstrating that sea clutter is the result

measurements, there are no residuals at all. The determini&ic2 hyPrid continuous-wave modulation process that involves
plitude as well as frequency modulatidghis section also

chaos approach has enormous potential in that it makes 3 ) : _
possible to reproduce the mechanism underlying th@cludes a tlme—va_rymg, data-dependent autoregrt_asswe model
experimental data with a computer model. It has attracted tfigf Sea clutter, which, in a way, relates to our earlier work on
attention of numerous researchers in the natural and applibtf autoregressive modeling of radar clutter in an air-traffic
sciences, trying to identify if their data are close to beiné:ontrol environment [35-38]. Section V, the fmal section of the
chaotic and lend themselves for a deterministic modelingf"per} presents conclusions and an overview of the current
approachChaos theonjitself is motivated by earlier works of irections of resear_ch on recur3|_ve-learn|ng models that may be
Kaplan and Yorke [8], Packard et al. [9], Takens [10], Maﬁéelevant to the nonlinear dynamics of sea clutter.

[11], Grassberger and Procaccia [12], Ruelle [13], Wolf et al.

[14], Broomhead and King [15], Sauer et al. [16], Sidorowich

[17], and Casdagli [18]. Indeed, it was these papers that



Il. STATISTICAL NATURE OF SEA CLUTTER: introduced. Table 2-1 in [35] links expected wave parameters,
CLASSICAL APPROACH such as height and period, to environmental factors including
wind speed, duration, and fetch. The frequently used short form
Sea clutter, referring to the radar backscatter from the sgives the sea-state number only.
surface, has a long history of being modeled as a stochastic The angle at which the radar beam illuminates the surface
process, which goes back to the early work of Goldstein [24]s called the grazing angld) , measured with respect to the
One of the main reasons for this approach has been thga| horizontal. The smallest are, of the sea surface within
random-looking behavior of the sea clutter waveform. In th‘v’vhich individual targets can no longer be individually resolved

classical view, going back to Boltzmann, the irregular behavuLg termed the resolution cell, whose area is given by
of a physical process encountered in nature is believed to be ’

due to the interaction of a large number of degrees of freedom = RO (g)se@ 3)

) o T b\ 2

in the system, hence the justification for the statistical

approach. where R is range,eb is the azimuthal beamwidth of the

There are three signal domains of the radar waveform intennag is the speed of light; is the radar pulse length, and
which the clutter properties need to be characterizeq; is the grazing angle.

amplitude, phase, and polarization. Non-coherent radars tpe packscatter power (square of the amplitude) has been
measure only the envelope (amplitude) of the clutter signaly,qieq at two different time scales. Studies [37] have produced
Coherent radars are able to measure both signal amplitude afigirical models relating to the long-term (over several

phase. Polarimetric effects are evident in both types of radaginytes) average, given as the normalized radar cross section,

Before discussing these effects, some background on the\arious parameters, including grazing angle, radar frequency
characterization of the sea surface and consideration of tﬁﬂd polarization, and wind and wave conditions.

geometry of a low-grazing-angle radar is desirable.

A.1 Polarimetric effects
A. Background

One of the dominant scattering mechanisms at microwave

It is the nature of the surface roughness that determines Ur?@quencies and low-to-medium grazing angles Bsagg
properties of the radar echo [35]. The roughness of the Se@atering It is based on the principle that the returned signals
surface is normally characterized in terms of two fundamentglyy, scatterers that are half a radar wavelength apart (measured
types of waves. The first type is termed gravity waves, Withong the line of sight from the radar) reinforce each other
wavelengths ranging from afe\(v hundred metres to afractl_on fnce they are in phase. At microwave frequencies, the Bragg
a metre. The dominant restoring force for these waves is R ,er is from capillary waves. It has long been observed that

force of gravity. The second type is smaller capillary wavegare is a difference in the behavior of sea backscatter
with wavelengths on the order of centimeters or less. T

dominant restoring force for these waves is surface tension.

The gravity waves, which describe the macrostructure
the sea surface, can be further subdivided into sea and swé
Sea consists of wind-waves: steep short-crested waves dri
by the winds in their locale. Swell consists of waves of lon o . -
wavelength, nearly sinusoidal in shape, produced by distal ?Iarlzgtlon. 'How.ever, the HH S|'gnal often e?<h|b|ts Ie}rge
winds. The very irregular appearance of the sea surface is d éget-llke'spllfes in_amplitude, with these spikes having
to interference of the various wind and swell waves and to loc lecorrelatlon times on the order of one second or more.

atmospheric turbulence. Near coastlines, ocean currer\1ltsr F'gutri?nz fShrOV;ﬁ the ﬁv:)“:l?og ?f the (I;)otppler rs]:prec:‘[tru:?]
(usually tidal currents) may cause a considerable increase i ous e € conerent dala used 1o generale the
mplitude plots of Fig. 1. In this case of incoming waves, the

the wave heights due to their interference with wind and sweﬂH i is shifted further f the f
waves. The microstructure of the sea surface - the capillar i i?]peic ruLn on ar\]/ie:]agrenl]s SnIDe lIJrr f(-:r ronr1] € rﬁg”i’lﬁy
waves - are usually caused by turbulent gusts of wind near t eY (ie., has a higher mean Loppler Ireque cy), and at the
surface. times of strong signal content, the HH spectrum may reach

L . : . higher frequencies than does the VV spectrum.
Waves are primarily characterized by their length, height The differences in the spectra suggest that different

and period. The phase speed is the ratio of wave length over -
wave period. Wave length and period (hence, phase speed) ttergrs are con tributing to th? .HH and V\./ return.s. They can
e partially explained from conditions associated with breaking

be derived from the dispersion relation [36]. Wave heigh X : :
fluctuates considerably. A commonly reported measure | aves. The breaking waves contribute to the bunching of

significant wave heightiefined as the average peak-to-trougl’?catterers’ consistent with arguments for the applicability of the

height of the one-third highest waves. It indicates the

predominant wave height. 1 A signal's polarization is designated by a two-letter
To provide a simple metric to indicate qualitatively the combination TR, where T is the transmitted polarization (H or

current sea conditions, the concept of the sea-state was V) and R is the received polarization (H or V).

hgepending on the transmit polarizatibn.Horizontally-
larized (HH) backscatter has a lower average power as

Rmpared to the vertically-polarized (VV) backscatter, as

redicted by the composite surface theory and Bragg scattering
]. As a consequence, most marine radars operate with HH




compoundK-distribution [39]. With the scatterers bunched abf sea clutter, and in so doing, to gain insight into the physical
or near the crest of the breaking wave, there is the opportuniand electromagnetic factors that play a role in forming the
for a multipath reflection from the sea surface in front of thelutter signal. Based on the success of the first goal, the second
wave. The polarization dependence arises from the relatigwal is to produce a model, ideally physically based, with
phase of the direct and surface-reflected paths. For VWhich a representative clutter signal can be generated, to
polarization, thBrewster effectnay lead to strong cancellation extend receiver algorithm testing into clutter conditions for
of the return, whereas the HH polarization will exhibit a strongvhich sufficient real data are unavailable. Two current models
(possibly spiky) return [39]. The Brewster angle is thehat seek to address the second goal (at least in one of the signal
particular angle of incidence for which there is no reflectedomains) are the compounid-distribution model and the
wave when the incident wave is vertically polarized. Doppler spectrum model.

B.1 Compound K-distribution

Characterization of the amplitude fluctuations of the sea
backscatter signal is a continuing source of study. Much of the
early work in fitting amplitude distributions was based on the
use of a Gaussian model, implying Rayleigh distributed
amplitudes. However, it was soon found that operating with
increased radar resolution and at low grazing angles, the
Gaussian model failed to predict the observed increased
occurrence of higher amplitudes. Researchers began using two-
parameter distributions to empirically fit these longer tails.
Such distributions include Weibull [25], lognormal [41], and K
[29,30]. Use of the latter has led to the development of the
compoundK-distribution.

The nature of the sea surface, with its two fundamental
types of waves - short capillary and wind waves, and longer
0 0 60 80 100 120 gravity waves - suggests the utility of a model composed of two

Time (s) (or perhaps more) components. This approach, in various
© forms, has been proposed by several researchers (e.g., [42],
[28]). One such approach is the compouHKedistribution
[28,29]. From experimental studies, it was found that over
short periods, on the order of a few hundred milliseconds, the
sea clutter amplitude can be fit reasonably well with a Rayleigh

From X-band scatterometer data from advancing Waveg’istribution. Then, averaging the data over periods on the order
Lee et al [40] identified VV-dominant, comparatively short-0f 30 ms to_ remove the fa:_st flgctuation,_the resulting longer
lived “slow (velocity) scatterers”, and HH-dominant longer-{€'M variation could be fit with a Chi (or root-gamma)
lived “fast (velocity) scatterers”. Because the water particledistribution. The proposed model is one in which the overall

that define a breaking wave crest necessarily exceed the orbf4/tter amplitude is modeled as the product of a Rayleigh-
acceleration of the linear-wave group that initiates thdistributed term and a root-gamma distributed term. The

nonlinear evolution of the wave structure, the fact that fa&verall amplitude distributiop(x) is given by

Doppler (m/s)

Doppler (m/s)

Doppler (m/s)

Figure 2: Time-Doppler plots: (a) data k& VV polarization; (b)
data seH, VV polarization; and (c) data set, HH polarization, using
a window size of 0.5s.

scatterers are observed is not surprising. Sea spikes from 0
advancing waves are collocated with the fastest scatterepﬁ(,x) = J.p(x‘ y) p(y)dy 4)
which are identified with the wave crest. Based on

experimental data for approaching waves, Rino and Ngo [33] 0 o _ N
suggest that the VV backscatter is responding to slowde two pdfs within the integral, (namely, the conditional pdf
scatterers confined to the back side of the wave while HH &f X giveny, and the pdf of acting alone), are

2

responding to the fast scatterers near the wave crest. The HH X 0 o0
response to the back-side scatterers (presumed to be Bragg-li{ex| y) = —ZexpB——zEE Os X< (5)
structures) may be suppressed due to the angular dependence 2y O 4y O
of the Bragg scattering. and
2v
2b™ 2v-1 2 2
B. Current models p(y) = F(v)y exp(-by“); 0<y<oo (6)

There are two goals related to the modeling of clutter. ThEquation (5) shows(xly) to be Rayleigh distributed, with the
first goal is to develop an explanation for the observed behavigiean level determined by the valueyfThe distribution of y



given by (6) is Chi or root-gamma. Substituting (5) and (6) intanemoryless nonlinear transform into Chi variates with an
(4) yields exponentially decaying autocorrelation. Watts  [44]
Ac parameterizes the form of the autocorrelation in terms of the
Fm clutter decorrelation time and the shape parameter oKthe

distribution. Details can be found in Watts [44], Tough and
wherec = bJ1/'4 . Ward [45], and Conte et al [43].

The resulting overall distribution given by (7) is the
distribution; hence, the model is termed the compotid -
distribution model. The Rayleigh-distributed component may &} thrt‘eef‘r Y
be considered as modeling the short-term fluctuation of the
scatterers, while the root-gamma distributed component
represents the modulation of the intensity of the scattering in s(k)
response to the gravity waves. Since sea clutter is locally . ) .
Rayleigh distributed (resulting from application of the centrafigure 4: Generic model for generating complex non-Gaussian
limit theorem within a patch), it appears that the non-Raerigﬁorrelated data. The thick line denotes the flow of complex quantities.
nature of the overall clutter amplitude distribution is due tcgafter [43D).
bunching of the scatterers by the sea wave structure, rather t
being due to a small number of effective scatterers [29].

We need to consider the correlation properties of the
clutter amplitude. Figure 3 shows a typical plot of thethe
autocorrelation of the VV signal on two time scales. The Ief&

trace, based on a sample period of 1ms, shows that t fid guadrature) components, or its magnitude (amplitude)

correlation due to the fast fluctuation component is undea{nd phase angle. Movement of the scatterer relative to the radar

10ms. The right trace shows the long-term correlations, on tll%uses a pulse-to-pulse change in the phase of the radar echo.

order of 1s. Note, however, the apparent periodicity of th?h- . . .
X S is phase change is equivalent to a Doppler frequency shift,
long-term autocorrelation, on the order of 6.5s. This oscillatio P 9 q PP g Y

reflects the periodicity of the swell wave. Blven as
A
whereh is the radar wavelength, afiés the Doppler frequency
shift resulting from the movement at a velociyalong the
radial between the radar and the scatterer. The Doppler
: spectrum of sea clutter results from two main processes: the
R ool N spread about the mean Doppler frequency is a manifestation of
° 10 20 50 40 %0 LR I the random mo]:uor;1 of the unresol}/ed fscatterers, while tne
Figure 3: Plots showing the two time scales of the clutter amplitudgilso%a':i(i)enm;rlLeore;oﬁ/e;nazr\]/es?qli')rz;(ringreiﬂgeerl/(zu t?(;iposf t:lee

autocorrelation, for the data of figure 1(b). The left graph shows ti;% | . ide insight into th
quick initial decorrelation, on the order of a few milliseconds, of th oppler spectrum versus time can provide Insight into the

fast fluctuation component. The right graph shows the slowigcattering mechanisms, and identify properties that a sea clutter

decaying and periodic correlation of the slow fluctuation componentnodel should possess. ' '
The oscillation reflects the periodicity of the swell wave. Note that in a realistic sea surface scenario, there will be a

continuum of waves of various heights, lengths, and directions.

For generating-distributed clutter, both Ward et al [29] This continuum is typically characterized by a wave frequency
and Conte et al [43] have suggested the same basic structigpectrum (or wave-height spectrum), describing the
shown in Fig. 4. Complex white Gaussian nois), is passed distribution of wave height versus wave frequency. There are a
through a linear filter, whose coefficients are chosen toumber of models relating environmental parameters such as
introduce the desired short-term correlation. The output of theind speed to the frequency spectrum [46]. The frequency
filter is still Gaussian distributed, so that the amplitude/@) spectrum can then be extended to the directional frequency
is Rayleigh distributed. The modulating tes(m) is a real non- spectrum by introducing a directional distribution [47]. Under
negative signal with a much longer decorrelation timeéhe assumption of linearity, the combined effect is the
compared toy(n). To generate a K-distributed amplitude, thesuperposition of all the waves, calculated by integrating across
s(n) should be drawn from a Chi distribution. Addressing thehe appropriate range of directional wave numbers. In reality,
long-term correlation of the clutter requires generatinghe final surface is a nonlinear combination of the continuum of
correlated Chi-distributed variategn). It is not possible to waves.
produce an arbitrary correlation, but some useful results have Walker [48] studied the development of the Doppler
been reported. Gaussian variates are passed through a singplectra for HH and VV polarizations as the breaking wave
first-order autoregressive filter, then converted using passed the radar sampling area. Coincident video images were

P(¥) = —(eX) 'K, 4(20%); 0<x<o )

¢ x(K)

@5 Doppler Spectrum

A coherent radar is able to measure both the amplitude and
phase of the received signal. The received baseband signal
a complex voltage, given either in terms of its in-phase (1)

Short—term Long—term

1.0 T :
0.8 [\ i
0.8 [\
04l N
0.2

0.0 [t
—0.2

1.0 : : : :
0.8 [ i
I

0.4
Q.2

Amplitude Autocorrelation
Amplitude Autocorrelation




taken of the physical wave. Three types of scattering regimg®everning the evolution of theorenz modelare deceptively

appear to be important: Bragg, whitecap, and spike eventsmple but the presence of certain nonlinear terms in all three

Walker [49] proposes a three-component model for the Dopplequations gives rise to two unusual characteristics:

spectrum based on these regimes. (i) A fractal dimensiorequal to 2.01.

(1) Bragg scatteringThis regime makes VV amplitude greater(ii) Sensitivity to initial conditionsmeaning that a very small
than HH. Both polarizations peak at a frequency perturbation in initialization of the model results in a
corresponding to the velocity = vg + Vp, wherevg is the significant deviation in the model's trajectory in a

term attributable to the Bragg scatterers apds a term relatively short interval of time. _
encompassing the drift and orbital velocities of thel N€S€ two properties are the hallmarkobfos [52], a subject

underlying gravity waves. The decorrelation times of thdh@t has captured the interests of applied mathematicians,

two polarizations are short (tens of millseconds). physicists, and _to a much lesser extent, signal-processing
(2) Whitecap scatteringThe backscatter amplitudes of the twor€Séarchers, during the past two decades.

polarizations are roughly equal, and are noticeably ) )

stronger than the background Bragg scatter, particularly fi-  Nonlinear Dynamics

HH, in which Bragg scattering is weak. In a time profile, _ ) _
the events may be seen to last for times on the order of Before anything else, for a process to qualify as a chaotic

seconds, but are noisy in structure and decorrelate quickiJOC€SS, its underlying dynamics must menlinear One test
(again, in milliseconds). Doppler spectra are broad a at we can use to check for the nonlinearity of an experimental
centred at a speed noticeably higher than the Bragg spedf}€ Series is to emplogurrogate dataanalysis [53]. The
at or around the phase speed of the larger gravity wavessSurrogate data are generated by using a stochastic linear model
(3) Spikes:Spikes are strong in HH, but virtually absent inwith the same auto_corre_lation fgnction, or equivalt_ently power
VV, with a Doppler shift higher than the Bragg shift. They_spectrum, as the given time series. The expone_ntlal growth of
last for a much shorter time than the whitecap returns (dlqter—pomt distances between these two models is then used as
the order of 0.1 sec) but remain coherent over that time. the discriminating statistic to test thrull hypothesighat the
Each of these three regimes is assigned a Gaussian line shgg@erimental time series can be described by linearly
with three parameters: its power (radar cross-section), cenfrgrelated noise. For this purpose, thann-Whitney rank-
frequency, and frequency width. Assuming the overaffum-statistic denoted by the symbaZ, is calculated. The
spectrum is a linear combination of its components, the yytatistic Z is Gaussian distributed with zero mean and unit
spectrum is the sum of Bragg and Whitecap lineshapes, whivariance under the null hypothesis that two observed samples
the HH spectrum is the sum of Bragg, Whitecap, and Spik%f inter-point distances calculated for the experimental time
lineshapes. series and the surrogate time series come from the same
The model has been validated with experimental cliff-toffOPulation. A value o less than -3.0 is considered to be a
radar data, for which the widths and relative amplitudes of thgf!id reason for strong rejection of the null hypothesis, that is,

Gaussian lineshapes were determined using a minimizati#f €xperimental time series is nonlinear [54].
algorithm. Appendix B summarizes three real-life sea clutter data

Other researchers have similarly identified Bragg angets, which were collected with the IPIX radar on the East

faster-than-Bragg components, using Gaussian lineshapes §§tast of Canada. (A brief description of the IPIX radar is
the former, and Lorentzian and/or Voigtian lineshapes for therésented in Appendix A.) Specifically, the data sets used in
latter [40]. The results were reported for the case of breakirfj€ case study are as follows: _
waves but in the absence of wind. » Data setL1, corresponding to a lower sea state, with
In this section, we have focused on the classical statistical the ocean waves moving away from the radar; the
approach for the characterization of sea clutter. In the next sampling frequency of this data set is twice that of the

section, we consider deterministic chaos as a possible other two data setsl andL2. _ _
mechanism for the nonlinear dynamics of sea clutter. * Data setH, corresponding to a higher sea state, with
the ocean waves coming towards the radar.

. | S THERE A RADAR CLUTTER ATTRACTOR? » Data set 2, corresponding to a lower sea state, taken
earlier the same day as data Betind at a radar range
of 4 Km compared to 1.2 Km for data set; this
difference in range causés$ to have a considerably
better signal-to-noise ratio thag.

Two different types of surrogate data were generated:

« Data setsLlg;, L2gyr1 and Hgyr Which were

The Navier-Stokes dynamical equatioase basic to the
understanding of the underlying principles of fluid mechanics,
including ocean physics [50]. Starting with these equations,
Lorenz [51] derived an unrealistically simple model for
atmospheric turbulence, which is described by three coupled

nonlinear differential equations. The model, bearing his name, respectively derived from sea clutter data detsL2,
was obtained by deleting everything from the Navier-Stokes andH using the Tisean package described in [55]. The
equations that appeared to be extraneous to the simplest method keeps the linear properties of the data

mathematical description of the model. The three equations, specified by the squared amplitude of its Fourier



transform, but randomizes higher order properties biyyapunov exponentsiescribe the action of the dynamics
shuffling the phases. defining the evolution of the attractor’s trajectories. Suppose
+ Data setsL1g,» and Hg s Which are respectively that we now picture a small sphere of initial conditions around
derived from sea clutter data sdt$ andH using a @ point in the state-space of the attractor and then allow each
procedure based on the compoukdiistribution, as initial condition to evolve in accordance with the nonlinear
described in Conte et al. [43]. dynamics of the attractor; then we find that in the course of
Table 1 summarizes the results of applying Zreest to the  time the small sphere of initial conditions evolves into an
real-life and surrogate data sets. The calculations involvirgflipsoid. The Lyapunov exponents measure the exponential
surrogate data setslg, L2, and Hg,q Were repeated rate of growth or shrinkage of the principal axes of the evolving

four times with different random seeds, to get a feel for thgllipsoid. For a process to be chaotic, at least one of the
variability of the Z-statistic (and chaotic invariants to belyapunov exponents must be positive so as to satisfy the

discussed). Based on the results summarized in Table 1 ygguirement of sensitivity to initial conditions. Moreover, the
may state the following: sum of all Lyapunov exponents must be negative so as to

1. Sea clutter imonlinear(.e., Zis less than -3) when the sea Satisfy the dissipative requirement. - _
state is high. With this brief overview of chaotic dynamics, we return to

2. Sea clutter may be viewed lisear (i.e., Z is considerably the subject at hand: the nonlinear dynamics of sea clutter.
larger than -3) when the sea state is low and the ocean N @n article published in 1990, Leung and Haykin [19]
waves are moving away from the radar. But, when thB0Sed the following question:

ocean waves are coming toward the radar, sea clutter is “Is there a radar clutter attractor?”
nonlinear(i.e., Z is less than -3) even when the sea state is  BY @PPlying the Grassberger-Procaccia algorithm to sea
loW. clutter, Leung and Haykin obtained a fractal dimension

3. The surrogate data sets have largevalues (i.e., less between 6 and 9. Independently of this work, Palmer et al. [20]
evidence for nonlinearity) than their original counterparts‘?bta'”ed a value between 5 and 8 for the correlation dimension

(Surrogate data setdr, L2 rr1andHg,ppare linear by Of seaclutter. _
construction.) These initial findings prompted Haykin and co-

On the basis of these results, we may state that sea Clutkr%:/estlgators to probe more deeply into the possible

/
. . . . . .. C
is a nonlinear dynamical process, with the nonlinearit

aracterization of sea clutter as a chaotic process by looking
depending on the sea state being moderate or higher and

T '529 the second invariant: Lyapunov exponents. Haykin and Li
ocean waves moving towards or away from the radar, ] reported one positive Lyapunov exponent followed by an
The next question to be discussed is whether sea clutter.

exponent very close to zero, and several negative exponents.
close to being deterministic chaotic. If so, we may then applgﬁ:jsgvas followed by a more_detalled Investigation by Hay!qn
the powerful concepts of chaos theory. n uthu_sserypgdy_[Z3], using state—o_f-the—art algont_hms.

* A maximum-likelihood-based algorithm for estimating the

correlation dimension [56].

* An algorithm based on Shannon’s mutual information for
measuring the embedding delay [57,58].
Global embedding dimension, using the method of false
nearest neighbors [59]; thembedding dimensions
defined as the smallest integer dimension that unfolds the
attractor.
Local embedding dimension, using the method of local
false nearest neighbors [60]; the local embedding
dimension specifies the size of the Lyapunov spectrum.
An algorithm for estimating the Lyapunov exponents,
which involves recursive QR decomposition applied to the
Jacobian of a function that maps points on the trajectory of
the attractor into corresponding points a prescribed
number of time steps later [61, 62].
findings reported by Haykin and Puthusserypady [23] are
mmarized here:
Correlation dimension between 4 and 5.
Lyapunov spectrum consisting essentially of 5 exponents,
with two positive, one close to zero, and the remaining
ones negative, with the sum of all the exponents being
negative.
Kaplan-Yorke dimension, derived from the Lyapunov
spectrum, very close to the correlation dimension.

B. Chaotic Invariants

In the context of a chaotic process, two principal features,
namely, the correlation dimension and Lyapunov exponent‘s,
have emerged amvariants with each one of them highlighting
a distinctive characteristic of the process.

Physical processes that require an external source of
energy are dissipative. For sea clutter, wind and temperatu‘re
differences (caused by solar radiation) are the external sources
of energy. A dissipative chaotic system is characterized by its
own attractor. Consider then the set of all admissible initial
conditions in the multidimensional state-space of the system,
and call this the initial volume. The existence of an attractor
implies that the initial volume eventually collapses onto a
geometric region whose dimensionality is smaller than that OIIhe
the original state-space. Typically, the attractor has a multisheet
structure that arises from the interplay between stabilizing an
disrupting forces. Thecorrelation dimension originated by :
Grassberger and Procaccia [12], provides an invariant measure
of the geometry of the attractor. For a chaotic process, the
correlation dimension is always fractal (i.e., non-integer).

Whereas the correlation dimension characterizes the
distribution of points in the state space of the attractor, the



These findings were so compelling, in light of known chaos

theory, that the generation of sea clutter was concluded to
the result of a chaotic mechanism, on which we have more
say in Section E.

C. Inconclusive Experimental
Invariants of Sea Clutter

chaotic process and a stochastic process. We have found this

be
{0)

Results on the Chaotic

that of their surrogate counterparts that are known to be
stochastic by design.

Examining Table 2 on the estimates of Lyapunov spectra
and the derived Kaplan-Yorke dimension, we again see
that a test based on Lyapunov exponents is incapable of
distinguishing between the dynamics of sea clutter data
and their respective stochastic surrogates.

Similar results on the inadequate discriminative power of these
The algorithms currently available for estimating thealgorithms are reported in [63].

chaotic invariants of experimental time series work very well
indeed when the data are produced by mathematically derivetaotic invariants are essentially the same as those of the
chaotic models (e.g., the Lorenz attractor), even in the preserm@rogates that are known to be stochastic. The notion of
of additive white noise so long as the signal-to-noise ratio isonlinearity alone does not imply deterministic chaos; it
moderately high. Unfortunately, they do not have the necessamerely excludes the possibility that a linear mechanism is
discriminative power to distinguish between a deterministicesponsible for the generation of sea clutter.

We thus conclude that although sea clutter is nonlinear, its

serious limitation for all the algorithms in our chaos analys
toolbox. The estimates of the correlation dimension a
Lyapunov spectrum are summarized in Tables 1 and 2. Ba
on these results, we may make the following observations:

Table 1: Summary ofZ-tests and correlation dimension

is
nd
sed

L1

Data Set Z-statistic Maximum
likelihood
estimate
of
correlation
dimension

L1 0.1 5.1

Llgyrr1a -0.2 5.8

Llgyrrb 0.0 5.8

Llgyrric -0.4 5.7

Llgyrrig -0.4 5.6

Llgyrroa -0.7 5.8

L2 -5.4 5.9

L2urr1a -2.8 5.2

L25urr1b -3.7 5.2

L2¢urr1c -3.4 5.5

L2¢urr1d -2.9 5.4

H -3.5 4.4

Hsurria -0.5 5.4

Hsurrib 0.3 5.3

Hsurric -1.1 5.3

Hsurrid -0.1 5.3

Hsurr2 -2.9 4.8

Table 2: Summary of Lyapunov exponents*

Dyy =k+

Horiz denotes the horizon of predictability, which is computed fi
the Lyapunov exponents. The horizon of predictability is give
units of sample period, which can be converted to time in seconds by
dividing by the sampling rate. Note that data k&twas sampled at

KHz, while data set&2 andH were sampled at 1 KHz. Therefore, the

Exp

Set Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 sum Dimen  Horiz

L1 0.1046 0.0411 -0.0154 -0.0864 -0.2670 -0.2231 4.16 37.41
Llgyria 0.1184 0.0419 -0.0196 -0.1028 -0.3003 -0.2625 4.13 33.03
Ligymp 0.1176 0.0443 -0.0129 -0.1003 -0.3130 -0.2643 4.16  33.26
Lilgype 0.1152  0.0457 -0.0198 -0.1045 -0.2876 -0.2509 4.13 33.95
Lilgyg 0.1222 0.0473 -0.0149 -0.0947 -0.2867 -0.2269 4.21 32.02
Llgyrro 0.1211 0.0445 -0.0235 -0.1163 -0.3418 -0.3159 4.08 32.30
L2 0.4472 0.2675 0.0606 -0.2448 -0.8735- 0.3429 4.61 8.75
L2gyr1a  0.2304 0.1032 0.0315 0.2185 -0.6447 0.5611  4.13 16.98
L2y 0.2395 0.1143  0.0235 0.2020 -0.6762 0.5479  4.19 16.34
L2gyr1c  0.2352 0.1088 0.0267- 0.1970- 0.6847 0.5645  4.18 16.63
L2g,r1g 0.2434 0.1176 0.0245- 0.1876 0.6708 0.5218 4.22 16.07
H 0.4058 0.2405 0.0644 0.1998 0.7674 0.2565  4.67 9.64
Hguria  0.3521 0.1871 0.0193 0.2107 0.8399 0.4921  4.41 11.11
Hsurip  0.3836  0.2066 0.0221 0.2092 0.7885 0.3853  4.51 10.20
Hsurie  0.3877  0.2038 0.0160 0.2111 0.7994 0.4028  4.50 10.09
Hsurig  0.3670  0.1941 0.0085 0.2008 0.8027 0.4339  4.46 10.66
Hsurr2 0.3556 0.2007 0.0240 0.2248 0.7917 0.4361  4.45 11.00

*Expl to Exp5 denote the estimated Lyapunov exponents, giveén in
units of nats per sample.
Exp sum denotes the sum of the Lyapunov exponents.
Dimen denotes the Kaplan-Yorke dimension defined by

Ao+ A Ap>Ay> e >R >

L1 - k = max{i,A;+ -+, >0}
om

in

horizon values listed in the table appear as approximately dpuble

the values fot.2.

D.

(i) Examining the last column of Table 1 on the maximum-
likelihood estimate of the correlation dimension, we se@nd co-investigators has been the formulation ofohust
that for all practical purposes there is little differencedynamic reconstruction algorithrto make physical sense of
between the correlation dimension of sea clutter data angal-life sea clutter by capturing its underlying dynamics. Such

an algorithm is essential for the reliable modeling of sea clutter

Dynamic Reconstruction

All along, the driving force for the work done by Haykin



and the improved detection of a target in sea clutter. Successful
development of such a dynamical reconstruction algorithm w&b
also considered to be further evidence of deterministic chaos gs applied provided that a “reliable” method is used for
the descriptor of sea clutter dynamics. estimating the embedding delay According to Abarbanel

To describe the dynamic reconstruction problem, witlg4], the recommended method is to compute that partiaular
chaos theory in mind, consider an attractor whose procef§ which the mutual information betweeny(f)} and its
equation is noiseless, and whose measurement noise diflayed version \(n-T)} attains its minimum value; and the
additive, as shown by the following pair of equations: recommended method for estimating the embedding
x(n+1) = f(x(n)) (9) dimensiondy is to use the method of false nearest neighbors.
y(n) = h(x(n)) +w(n) (10) A distinction must be made between dynamic

_ N reconstruction and predictive modelirigredictive modelings
Suppose that we use the set of noisy observat{or{s)} ,_;  an open-loop operation, which merely requires that the
prediction error (i.e., the difference between the present value
T of a time series and its nonlinear prediction based on a
r(n) = [y(n), y(n-1), ..., y(n—(D-1)1)] (11) prescribed set of past values of the time series) be minimized in
wheret is theembedding delagqual to an integer number of the mean-square sense. Dynamic reconstruction is more
time units, andD is the embedding dimension. As theprofound, in that its builds on a predictive model by requiring
observations evolve in time, the vecto(n) defines the closed-loop operation. Specifically, the predictive model is
underlying attractor, thereby providing a fiducial trajectoryinitialized with data drawn from the same process under study
The stage is now set for stating telay-embedding theorem but not seen before, and then the model’s output is delayed by
due to Takens [10], Mafié [11], and Sauer et al. [16]: one time unit and fed back to the input layer of the model,
Given the experimental time serieg(fi)} of making room for this new input sample by leaving out the

servations{ y(n)} rl?:l , the delay-embedding theorem may

to construct the vector

a single scalar component of a nonlinear
dynamical system, the geometric structure of
the hidden dynamics of that system can be
unfolded in a topologically equivalent
manner in that the evolution of the points
r(n) - r(n+1) in the reconstructed state-
space follows the evolution of the points
x(n) - x(n+1) in the original state space,
provided thatD > 2Dy + 1 whereDy is the
fractal dimension of the system and the
vectorr(n) is related to the given time series
{y(m} by (11).

oldest sample in the initializing data set. This procedure is
continued until the entire initializing data set is completely
disposed of. Thereafter, the model operates irma@nomous
manner, producing an output time series learned from the data
during the training (i.e., open-loop predictive) session.

It is amazing that dynamic reconstruction, as described
herein, works well for time series derived from mathematical
models of deterministic chaos, even when the time series is
purposely contaminated with additive white noise of relatively
moderate average power (see, for example, [65]).

Unfortunately, despite the persistent use of different
reconstruction procedures involving the use of a multilayer
perceptron trained with the back-propagation algorithm [22],

Ideas leading to the formulation of the delay-embeddingaqgularized radial-basis function (RBF) networks [66] and
theorem were described in an earlier paper by Packard et gdcyrrent multilayer perceptrons trained with the extended
[9l. Kalman filter [65], the formulation of a reliable procedure for
A key point to note here is that since all the variables of thghe dynamic reconstruction of sea clutter based on the delay-
system are geometrically related to each other in a nonlinegﬁ«,beddmg theorem has eluded us. The key question is why? A
manner, as shown in (9) and (10), measurements made OHegsible answer is offered in sub-section E.
single component of the nonlinear dynamical system contain  serious difficulties with the dynamic reconstruction of sea
sufficient information to reconstruct the multidimensional statg|ytter prompted the authors of this paper in September 2000 to
x(n). question the validity of a chaotic model for describing the
Derivation of the delay-embedding theorem rests on tWRpnlinear dynamics of sea clutter, despite the highly
key assumptions: encouraging results summarized in Section Ill. Indeed, it was
* The model is noiseless; that is, not only is the statBecause of these serious concerns that a complete re-
equation (9) noiseless, but the measurement equation (lamination of the nonlinear dynamical modeling of sea clutter
is also noiseless (i.ay(n) = 0). was undertaken, as detailed in Section IV. However, before
* The observable data sei(f)} is infinitely long. moving onto that section, we conclude the present discussion
Under these conditions, the theorem works with any dels§  on chaos by highlighting some importdassondearned from

long as the embedding dimensibnis large enough to unfold our work on the application of deterministic chaos to sea
the underlying dynamics of the process of interest. clutter.

Nevertheless, given the reality of a noisy dynamical model
described by (9) and (10), and given a finite record of



E. Chaos, a Self-fulfilling Propheey 3. Imposition of a nonstationary spatio-temporal structure on
the radar observable(s).

Chaos theory provides the mathematical basis of adence, given the physical reality that in addition to
elegant discipline for explaining complex physical phenomenaeasurement noise there is dynamical noise to deal with, and
using relatively simple nonlinear dynamical models. As withthe fact that there is usually no prior knowledge of the
every scientific discipline that requires experimentation wittmeasurement noise or dynamical noise, it is not surprising that
real-life data, we clearly needeliable algorithms for the dynamic reconstruction of sea clutter using experimental
estimating the basic parameters that characterize the physitiale series is a very difficult proposition.
phenomenon of interest, given an experimental time series. As
already mentioned, there are two invariants that are basic to thé HyBRID AM/FM MODEL OF SEA CLUTTER
characterization of a chaotic process:

» Correlation dimension In Section Ill, we have expressed doubts on the validity of
* Lyapunov exponents the deterministic chaos approach as the descriptor of sea

Unfortunately, state-of-the-art algorithms for estimatinglutter. In this section, we take a detailed look at several
these invariants do not have the necessliisgriminative power experimental data sets to explore new ways to model sea
to distinguish between a deterministic chaotic process andchutter. Apart from the classical approaches reviewed in Section
stochastic process. For the experimenter who hopes his/Herone source of inspiration is the recent work of Gini and
data qualify for a deterministic chaotic model, the results of &reco [68], who view sea clutter as a fast “speckle” process,
chaotic invariant analysis may end up working as a selfultiplied by a “texture” component which represents the
fulfilling prophecy, indicating the existence of deterministicslowly varying mean power level of the data---caused by large
chaos regardless of whether the data are really chaotic or netaves passing though the observed ocean patch. They model
The stochastic process could be colored noise, or a nonlingbhe speckle as a stationary compound complex Gaussian
dynamical process whose state-space model includpeocess, and the texture as a harmonic process. What we will
dynamical noise in the process equation. As pointed out find is that the relationship between the slow and fast varying
Sugihara [67], when we have noise in both the process apdocess is much more involved than what has been assumed so
measurement equations of a nonlinear dynamical model, thdez in the literature. In particular, we find that the slowly
is unavoidable practical difficulty in disentangling thevarying component does not only modulate the amplitude of
dynamical (process) noise from the measurement noise ttee speckle, but also its mean frequency and spectral width.
reconstruct an invariant measure. Specifically, in the estimation
of Lyapunov exponents, it is no longer possible to computd. Radar Return Plots
meaningful products of Jacobians from the experimental time
series because the invariant measure is contaminated with We use the data set2 andH from Appendix B. The
noise. analysis starts by looking at the radar return plots of these data

How do we explain the possible presence of dynamicaets, shown in Fig. 5. These plots show the strength of the radar
noise in the state-space model of sea clutter? To answer theturn signal (color-axis) as a function of time-gxis) and
guestion, we first need to remind ourselves that oceaange y-axis). A red color indicates a strong return, which is
dynamics are affected by a variety of forces, as summarized
here [50]:

» Gravitational and rotational forces, which permeate the '\ l ‘h' W‘H ‘l ‘\M M ] ‘y H”‘ W ” I
entire fluid, with large scales compared with most other H\ ‘ ‘H“‘ ! \\| ~| }\ q
forces. ‘

«  Thermodynamic forces, such as radiative transfer, heating, ¢ | ‘ “' ‘\.‘\H Ih
cooling, precipitation, and evaporation. d u i | \h ||| il

+ Mechanical forces, such as surface wind stress, 20 b g 0 120
atmospheric pressure variations, and other mechanical
perturbations.

* Internal forces - pressure and viscosity - exerted by one
portion of the fluid on other parts.

With all these forces acting on the ocean dynamics, and

therefore directly or indirectly influencing radar backscatter

. 20 40 60 80 100 120
from the ocean surface, three effects arise: Time (5

1. Evolution of the hidden state characterizing the underlyin
dynamics of sea clutter due to the constant state of moti
of the ocean surface.

glgure 5: Radar return vs. time and range, VV polarization, of (a) data
QL2 (low sea state); and (b) data $¢t(high sea state). The color

. . axis shows log|X|) ,wher& is the complex envelope of the received
2. Generation of some form of dynamical noise, 1) P P

contaminating this evolution with time, due to the naturaf
rate of variability of the forces acting on the ocean surfacéte (1oW) via green to red (high).

ignal. The units ok are normalized and the color axis changes from



associated with wave crests. The diagonal red stripes in baied to derive a physical justification for the use of #e
plots show that the wave crests move, with increasing time, distribution (see Section Il). If we think of a patch of ocean
towards a decreasing range, or towards the radar. Indeed we Bieeninated by the radar at a given time, according to this
from Appendix B that the wind and radar beam point in almostmodel the received signal will be dominated by a small number
opposite directions. If we look at a single range bin, i.e., alongf independent scatterers, each moving at its own velocity. We
a horizontal line in the radar return plots, we see that theake the additional restriction that, at least for the short
strength of the return signal is roughly periodic, with a periodiuration of a single sample time, each scatterer has its own
in the order of 4 to 8 seconds, corresponding to the period ofconstant velocity with respect to the radar. The received signal
the gravity waves (see Section Il). In Figs. 1a, b, ¢, such @an then be written as:

single range bin is plotted against time, fraxis now being N

return strength (amplitude of the received signal). The periodi = i i ) +

behavior is less pronounced due to the wild short—tem?(t) exp(leFt)kZlakexp(le k(o) + @) (13)

fluctuations of the signal, which are caused by Rayleighfadingl.vhere Wre is the RF angular frequency of the radar (equal

B. Rayleigh Fading 9.39 GHz for the IPIX radar)\ is the number of independent
scatterersay is proportional to the effective radar cross-section
Rayleigh fading arises when a number of complexf scattererk, and wy , and@, | are respectively the
exponentials of slightly different frequency are added together. ' o )
Figure 6 shows the magnitude and instantaneous frequency@fPPIer frequency and phase of scattekeat time to. After
the sumx = alexp(izmlt) + azexp(i2nf2t) , withfy = 1, removing_ the carrier wave by multiplying bﬁ"QRFt ., we see
) o that (13) is indeed a sum of complex exponentials with slightly
f2=1.1,8 =1, anda, is varied;i denotes the square root of -1. yigterent frequencies, thereby resulting in Rayleigh fading. The
In Fig. 6(a),a, is equal toa, and in (b) it is 10% larger. The frequencies are related to the physical speed of the scatterer by
figure illustrates the typical upside down U shape of théB).
magnitude of a Rayleigh fading process, with a pefigyeign

that follows
TRaerigh' 1/‘f1— fz‘. (12) 3k
=2
2 2 1
1.5 1.5 . . . .
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©  Time @ Time Figure 7: (a) Close-up of the radar return signal of Fig. 1b, and (b) cor-

responding instant frequen@f . Itis computegl,, — @)/ (2mAt) ,

Figure 6: Magnitude (a,b) and instant frequency (c,d) of the sum Qf; oo the phase is first unwrapped to remove jumps larger than
two complex exponentials: exgft) + exp(2md.1t); a,c; expi2mt) + andAt is the sampling time of 1 ms.

1.1 exp(2ml.1t) (b,d). Instant frequency is computed as the difference
between the phase of subsequent samples, after unwrapping the phase

to remove 2 jumps. Now that we have established the Rayleigh fading

characteristics of sea clutter amplitude data, we go back to (12)

Looking at the close-up of our data in Fig. 7, we see that botffhich relates, for the case of two complex exponentials, the
the magnitude and instantaneous frequency have the typi&gnod of the amplitude signal to the frequency difference of

characteristics of Rayleigh fading, although in Section C wi'® two exponentials. Sea clutter has much more than two
complex exponentials, and they are constantly changing

will find that most spikes in thep = dg/dt time series arefrequency. But as a coarse approximation, (12) may still be

actually caused by receiver noise. - useful. As a rough estimate for the averdligyyjeign Of Sea

~ Why does Rayleigh fading occur? The answer lies in thgtter, we use the average cycle time (ACT) of the data:

independent scatterer model that Jakeman and Pusey [27] fgghtract the median of the signal and take the average time



between two upward zero crossings. For the left-hand term tife scatterers to vary. Therefore, we again use a sliding
(12) we need to estimath | f,|, the frequency variability of sea window, this time of length 512 (0.5s) to compute a time-
clutter. This we estimate by taking the measured instantaneo(®Yying frequency spectrum. When the frequency is converted
frequency and computing its normalized median absoluigto Doppler velocity using (8), it becomes the time-Doppler
deviation (NMAD). The NMAD is a robust estimate of thespectra of Figs. 2a, b, c. The plots are very revealing, showing
signal’s standard deviation, ignoring the spikes. It is computdfiat the Doppler frequency fluctuations are a lot stronger for
as the higher sea-state clutter. Note also how the spectral width in
NMAD(p) = 1.48x mediar(\ip—mediar(ip)\). (14) the time-Doppler plots varies yvith time; this variation'follows
For the example of Fig. 7, we ha&CT(|X) = 0.01s andthe same trend as the NMAP signal of (14), which was
i Y ' ' introduced in sub-section B on Rayleigh fading.
NMAD (@) = 54Hz. If we take twice the standard deviation ~ The spectrogram contains many frequencies that are only
as our measure of variability, then the result satisfies (12), astivated by the receiver noise part of the data. We estimated
1 the receiver noise level by comparing the total power of the

0.01= 2x54° In Fig. 8, we look at how the two quantities signal to the power in the part of the Doppler spectrum below

2NMAD (¢) and 1/ACT(k|) evolve with time. We use a -4 m/s. The signal-to-noise ratio is found to be 17 dB for data
moving window of 1000 samples (1 second). For the high s tLZ_’ and 31 (.jB for data sét, the difference being caused by
state, the two curves almost overlap, in agreement with (12t e difference in range and the reduced overall power of lower

For the low sea state, the curves do not overlap but they follo a-state c_Iutter. _ . :
the same trends The noise estimates are very useful to estimate the variance

of the signals we derived from the data. For example, we can

250 - T T T T T see immediately that most of the spikes in the  time series
200} ; occur when the signal drops below the noise floor. And what is
< 150f the variance of the  signal? If the magnitude of the signal is
I
~ 100}

well above the noise flooro(p( L~ can be estimated using

50F
the formula (see Fig. 9)

0 20 40 60 80 100 120
Time (s) o -

250 R . . Qi1 — @

200

1ok where Og is the receiver noise level. From this estimate, it

Hz)

~100f appears that the NMADR{ ) signal in Fig. 8a (data k&) is
dominated by receiver noise, whereas in Fig. 8b (datdipét

is dominated by the clutter signal. For data 42 , this means

0 20 20 elo 80 100 120 ]

e that we now expect an inverse relationship between NM@D( )
and the amplitude of the signal. This relationship is clearly
visible if we compare the solid line in Fig. 11a to the dotted

ffhe in Fig. 11b.

Figure 8: 1/ACT(|X|) (solid line) and 2NMADyp) (dotted line) vs.
time, computed on a 1000 sample sliding window basis, for (a) da
setL2 and (b) data sét.

It is interesting to also try to link the variability ap ~ tap e,
itself. If we could do this, then even with an inexpensive non- '
coherent radar, using only the envelope of the received signa (9
the radar could provide a rough estimate of the speed of thi @
observed waves. This is not the focus of this paper, but the Re
strong correlation seen in Fig. 11d shows the viability of this
approach.

C. Time-Doppler Spectra ) _ . . -
Figure 9: If the magnitude of the amplitude signal is high compared to

Since the independent scatterer model tells us that tifae receiver noise level, the errgr  in the estimation of the apgle
received signal is the sum of a number of complef@n be approximated by the tangential component of the receiver
exponentials, it is most appropriate to describe the signal [pise, divided by the magnitude of the signal. If the receiver noise is
terms of its Fourier spectrum. But, as waves move along th&correlated, the variance ¢f,, — ¢, 272
observed ocean patch, we expect the number and strength of



D. Amplitude Modulation, Frequency Modulation, and More arise mostly on the crest of the wave, the wave will cause a
cyclic motion of the velocity of the scatterers. This motion is
Almost invariably, models for sea clutter distinguishwidely recognized, but its consequence, namely, a frequency
between the slow time scale of the gravity waves, and the fastodulation of the speckle component, has been neglected. And
time scale of the capillary waves. A typical approach is that dhere is more. When the mean velocity of the scatterers is high
Conte et al. [43], consisting of a colored noise process that & a given instant, then the spread around that mean is also high.
amplitude-modulated by a slowly varying intensity componen¥We can now explain why almost invariably we found sea
Figure 10 shows the time-Doppler spectrum for such datdutter to be nonlinear, when we presented the results in Table
(courtesy Alan Thomson). The results in the previous sectioris Recognizing that amplitude modulation is a linear form of
teach us that there is a much more intricate relationshipodulation but frequency modulation is not [69], we expect the
between the fast- and the slow-varying processes. value ofZ to become more negative as the amount of frequency
modulation increases. Figure 12 confirms this qualitative
relationship, by plotting theZ-value versus the amount of
frequency modulation. Apart from the dataskts L2 andH,
the figure uses an additional 75 datasets from our sea clutter
database, measured at a wide variety of experimental
conditions. It is no surprise that the surrogate data sets used in
Table 1 are less nonlinear than their original counterparts, since
the random phase shifting partially destroys the frequency
modulation. The typical “breathing” seen in time-Doppler
plots, such as the ones in Fig. 2, shows that not only the mean
of the velocity spectrum, but also its spectral width are
modulated. Moreover, in some cases, the velocity spectrum
even has a bimodal distribution (around time = 45 to 50 s in
10 20_ 30 40 Fig. 2b); recent work of Walker [48] shows that this is most
Time (s) likely caused by a breaking wave.

Figure 10: Time-Doppler spectrum of 50 seconds of data synthesized

Doppler (m/s)

with the method of Conte, Longo and Lops [47]. (Data providced by )
Alan Thomson.) o
-2 .
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Figure 12:Z-value vs. NMAD(ip ), computed for 78 datasets measured
by the IPIX radar at various experimental conditions.

So far we have identified four different processes acting on
the dynamics of the speckle component: amplitude modulation,
NI et DA A S S frequency modulation, spectral-width modulation, and bimodal

20 40 e 80 100 120 frequency distributions due to breaking waves. All these

Time (s)

P processes, which have the slow time scale of gravity waves,

Figure 11: (a,c) Lowpass filtered amplitude (1 second averagingyeed to be specified in order to synthesize artificial radar data.
dln Fig. 11, we look for possible correlation between the various
_ types of modulation. The relation between the amplitude

NMAD( ¢) (dotted line). (a,b) data se®. (c,d) data set. modulation and frequency modulation seems weak (compare
solid lines in Fig. 11a to 11b, and Fig. 11c to 11d). Figure 11d

When a large wave passes through the ocean patch undgbws that there is a strong correlation between the frequency
surveillance, it will first accelerate and then decelerate the

water on the ocean surface. The tilting of the ocean surface H]yo _
the wave causes the amplitude modulation. Even if scatterer®dulation, measured by NMA@ ). This correlation is not

(b,d) Low-pass filtered instant frequency (solid line) an

dulation ¢ averaged over 1s) and the spectral-width



confirmed by the equivalent plots for low sea-state in Fig. 11lglear from Fig. 13 which shows time-Doppler spectra of

but as argued in Section C that is due to receiver noise. synthesized clutter, using time-varying AR processes of order
1, 2 and 3, denoted as AR(1), AR(2), and AR(3), respectively.
E. Modeling Sea Clutter as a Nonstationary Complex The data are generated according to the difference equation:
Autoregressive Process —
X(t+1) = a) X+ 8y 4% (15)

So far our results have not made the sea clutter synthesis toota ¢ X oke®ets

much easier--it seems we almost have to provide the entirq1 . -
where all variables are complex,< ;> are the AR coefficients

time-Doppler spectrum to get a complete signature of the | L o
observed data. As a first step towards a practical algorithm, f} ime <t>with j = 1,2,...K, the brackets indicating that they

this section we compress the time-Doppler spectrum into onf'@19€ on a slow time scale oryis the model order, and

a few complex parameters per time slot, and at the same tirfies t> IS the noise process having a time-varying variance
we make it suitable for time-series generation. We argue gg? .

follows, using observations from the preceding discussion: G<t>

(1) On time-scales shorter than several seconds, sea clutter can The AR model of order 1 is clearly insufficient to describe

be described as the sum of complex exponentials. sea clutter in good detail, but it is by far the easiest to analyze
(2) A sum of complex exponentials is well described in term#! physical terms. It has three independent parameters that vary
of its Fourier spectrum. slowly with time: (1) the amplitude od; < >, (2) the angle of

(3) The Fourier spectrum of a dynamical system can often t%? 2
approximated most efficiently by asutoregressive (AR) 1 Bict>
process shows how these three independent parameters are coupled to

This brings us to the concept of a time-varying complex ARhe three main types of modulation mentioned in Section D.

process. We take a 1 second window (1000 samples), slide it

through data sdil (pertaining to a higher sea-state) with small
time increments, and each time we fit a complex AR process to
the data. We search for the lowest order time-varying AR
model that approximates the short-time Fourier transforms

<t > and (3) the variance of the noise _Figure 14

Doppler (m/s)

20 40 60 80 100 120

Doppler (m/s)

26 4‘0 éO E;O 160 120
Time (s)
©
Figure 14: Amplitude, frequency, and spectral width
modulation exhibited by the nonstationary complex AR(1) process,
trained on a 1000-sample sliding window of datalde{a) Lowpass

Doppler (m/s)

2 0 Tﬁiome(s) % 109 120 fitered amplitude of data setH and of the model

(c)
Figure 13: Time-Doppler spectra of data synthesized by a sliding AR/(C’g)/(l_ |ay?)(1v'2) , vs. time (plots overlap almost completely).

process'of_or_der 1 (a)_, 2 (b), and 3 (c). The th_ree plots have identi ) 1 second median filteredp) anida, f o/ (21) vs. tirfig is

color axis limits. The lighter background color in plot (a) is caused b

the larger residual error of the sliding AR(1) model. the pulse repetition frequency of 1000 Hz (plots overlap almost
completely). (c) NMAD (¢) (dotted line) and spectral width of the

(vertical lines in the time-Doppler spectrum) well. When we 2

increase the order from one to four, the standard deviation of _1F - 4aq| + 3y _

the residual error, averaged over time, decreases: 0.23, 0.Tdel, computed bgos “5 Za] [ (see [78]) vs. time.

0.091, 0.086, in units of signal standard deviations. In the same : .

units, the receiver noise as estimated from the time-Doppler

spectrum is 0.061. The improvement with model order is very




Indeed, we could rewrite the nonstationary AR(1) process intdynamical noise due to the fast fluctuations of the various
an equivalent stationary AR(1) process, modulated iforces, which act on the ocean surface. As pointed out by Heald
amplitude, frequency, and spectral width. Unfortunately, thand Stark [73], there is no physical system that is entirely free
sliding AR(1) does not provide a good enough description aif noise, and no mathematical model that is an exact

the data and we need to investigate in future work whagpresentation of realiy.We must therefore expect noise in
physical mechanism it is that the AR(2) and AR(3) havoth the process and measurement equations of sea clutter,

captured but the AR(1) has not. with two important consequences:
* There is unavoidable practical difficulty in disentangling
V. DISCUSSION ANDCONCLUSIONS the dynamical noise from the measurement noise when we

. try to reconstruct an invariant measure [67]. This may be
Sea clutter, referring to radar backscatter from an ocean ihe reason for why currently available algorithms for

surface, is a nonstationary, complex, nonlinear dynamical estimating chaotic invariants are incapable  of
process with a discernible structure that exhibits a multitude of discriminating between sea clutter and its stochastic
continuous-wave modulation processes: amplitude modulation, surrogates.

frequency modulation, spectral-width modulation, and bimodgl  The delay-embedding theorem for dynamic reconstruction
frequency distribution due to breaking waves. The modulations s formulated on the premise of a deterministic process.
are slowly varying (in the order of seconds) functions of time.  Ajthough, from an experimental perspective, it is possible
The amplitude modulation is clearly discernible in the sea- i, account for the presence of measurement noise through
clutter waveform, regardless of the sea state or whether the 5 proper choice of embedding delay and embedding
ocean waves are moving away from the radar or coming gimension [64], it is difficult to get around the unavoidable
towards it. The frequency modulation and variations in spectral presence of dynamical noise in the process equation. This
width and spectral shape become clearly observable when the may explain the reason for why it is very difficult to build a
nonlinear nature of sea clutter becomes pronounced. This predictive model for sea clutter that solves the dynamic
happens when the sea state is higher or the ocean waves are roconstruction problem in a reliable manner.

coming towards the radar. These observations on the Ney; addressing the issue of a computational procedure
nonlinearly modulated nature of sea clutter have become clegf sydying the nonlinear dynamics of sea clutter, the use of a
from the detailed experimental study reported in Section 'Yime-varying complex-valued autoregressive (AR) model, as
This study paves the way for a new phemenological approaglscrined in Section IV, is attractive for several reasons:

to the modeling of sea clutter in terms of all its modulating A AR model of relatively low order (4 or 5) appears to

components. In sub;equent work, we will extend the work to  pave the capability of capturing the major features of the
the full body of experimental data that we gathered on the East ,gnlinear dynamics of sea clutter.

Coast of Nova Scotia in 1993. We have already developed,a The AR model lends itself to a “phenomenological” rather
website that will also enable others to use this valuable han “black-box” analysis of sea clutter.

resource and contribute to this exciting field [70]. In a related way, it is noteworthy that, starting from the mid
1970s and for much of the 1980s, the first author of this paper
A. State-Space Theory and other co-investigators showed that a complex-valued AR

i ) model of relatively low order (4 or 5) provides a reliable
The adoption of &state-space moddbr sea clutter is @ method for modeling the different forms of coherent radar
natural choice for describing the nonstationary nonlinegfer, namely, ground clutter, rain clutter, and clutter due to a
dynamics responsible for its generation. Mostimportaitye {5k of migrating birds, in an air traffic control environment
features explicitly in such a description. 31-34]. Itis ironic that we now find that a complex-valued AR

The challenge in the application of a state-space model [ el of similar order is also capable of modeling sea clutter.
sea clutter is basically two-fold:

1. The formulation of the process and measurement
equations (including the respective dynamical and
measurement noise processes), which are most appropriate
for the physical realities of sea clutter.

2. The use of a computational procedure, which is not only 2We do not rule out the possibility of stochastic chaos or a
efficient but also most revealing in terms of the mixture of several deterministic chaos as well as stochastic

phenomenological aspects of sea clutter mechanisms being responsible for generating the nonlinear

. .. - dynamics of sea clutter. The notion sfochastic chaosnd
Each of these two issues is important in its own way.

liaht of th ial di . d related issues are discussed in [67,71,72]. However, we do not
In light of the material presented in Sections Il and IV, have the tools to distinguish between stochastic chaos and

and contrary to conclusions reported in earlier papers [19-23], stochastic processes using real-life data.

we have now corr?e.to- the conclusion the?t.sea clutter is notthe 3,14 and Stark [73] describe a Bayesian procedure for
result of deterministic chads.By definition, the process estimating the variance of dynamical noise for the case when
equation of a deterministic chaotic process is noise-free. In the noise processes in the nonlinear state-space model are

reality, however, the process equation of sea clutter contains additive.



B. Nonlinear Dynamical Approach versus Classical
Statistical Approach

The derivative-free state-estimation procedures are
designed to overcome serious limitations of the extended
Kalman filter when the problem of interest involves the study
The main focus of the classical approach, as discussed aha nonlinear dynamical system. The idea here is to eliminate
Section Il, has been to model (and hopefully explain) théhe need for computing Jacobians and Hessians (both of which
amplitude statistics of sea clutter. The emphasis is on poimvolve partial derivatives) by using multiple forward
statistics, with no attention given to the temporal dimensiompropagations [74, 75], or alternatively using Sterling’s formula
Some efforts have simply involved empirical fitting offor approximating a nonlinear function over an interval of
distributions to the observed clutter data. Other studies haselected length [76].
tried to provide some theoretical basis for the selection of the The sequential Bayesian estimation procedure is perhaps
clutter behavior in order to make the problem mathematicallnore powerful in that it permits us to tackle a very complex
tractable. For example, the assumption that we have discret@nlinear dynamical problem that was previously unsolved,
independent scatterers permits the application of random-watlamely, the problem of estimating the parameters,
theory in developing theoretical solutions. This approach wds/perparameters (i.e., covariances of the dynamical and
used in the original development of thédistribution [27]. measurement noise components of the state-space model), and
However, the applicability and efficiency of the model ismodel structure of parametric models evolving over time [77].
determined by the validity of the assumptions made in it¥his is indeed the very essence of using experimental time
development. The appeal of the compouKedistribution series to construct a state-space model for sea clutter. The only
model is that it can be cast as the overall distribution for thdrawback of this second approach is that it is computationally
product of two terms -- one Rayleigh-distributed and the othentensive, yet it lends itself to straightforward implementation
Chi-distributed -- which, in turn, have been found toon a parallel computer.
empirically fit the two time scales of sea clutter data in many
cases. The main motivation for the development of cluttehCKNOWLEDGEMENTS
amplitude statistical models has been in their use for estimating
the performance of various target-detection algorithms. ThEhe authors wish to express their gratitude to the Natural
algorithms do not make use of the temporal properties of tiéciences and Engineering Research Council (NSERC) of
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By contrast, the nonlinear dynamical approach, advocatewhnlinear dynamics of sea clutter in the early months of the
in this paper, accounts for time in an explicit manneryear 2000. They wish to thank Dr. Behnam Shahrrava and Zhe
Moreover, the explicit need for a statistical model is avoided bgSage) Chen for many useful discussions on the nonlinear
using real-life data to compute the parameters of a complex AdRnamics of sea clutter. They also wish to express their
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APPENDIX A - DESCRIPTION OF THEIPIX RADAR APPENDIX B - SPECIFICATIONS OF THE THREE SEA CLUTTER
SETS USED IN THIS PAPER

The IPIX radar is a transportable experimental radar system

designed and constructed at McMaster University. It was builthe radar data were measured in 1993 from a clifftop near

specifically with research in mind, and is very flexible in itsDartmouth, Nova Scotia, at a height of 30 m above the mean

design and configuration. Begun in the late 1980s, the radsea level, facing an open view of the Atlantic Ocean of about

underwent major redesign in 1991, and further upgrade Ky

1995. Its major features are listed in Table A-1.

Data set L1: low sea state, sampling freq. 2000 Hz

Date and time (UTgQNovember 18, 1993, 13:13
RF frequency9.39 GHz
Pulselength200 ns
Pulse repetition frequen¢2000 Hz

Table A-1. Major features of the IPIX radar system

Transmitter
¢ 8 KW peak power TWT

e HorV polarization, switchable pulse-to-pulse Radar azimuth ang|@90 Deg.

« frequency fixed (9.39 GHz) or agile over 8.9 to 9.4 GHZ Grazing angl¢l.4 Deg.

¢ pulse width 20-200 ns (20 ns steps), 200 ns to 5000 ns|(200 Rangg 1200-1410 m, sampled as 8 rangebins
ns steps) Range resolutiofB0 m

¢ pulse repetition frequency up to 20 KHz, limited by duty i

cycle (2%) or polarization switch (4 KHz) Width of resolution cefl19 - 23 m

- pulse repetition interval, configurable on a per-pulse basis Significant wave heigh0.79 m .
Wind|24 km/h, coming from 340 Deg.

Receiver

« fully coherent reception Data set L2: low sea state, sampling freq. 1000 Hz.

« 2 linear receivers; H or V on each receiver (usually on¢ H, Date and time (UTGQNovember 17, 1993, 11:57
one V for dual-polarized reception) RF frequency9.39 GHz

Pulselength200 ns
Pulse repetition frequengy000 Hz
Radar azimuth ang|@35 Deg.

¢ instantaneous dynamic range > 50dB

e 8-bit, or 10-bit with hardware integration, sampling
¢ 4 A/Ds: | and Q for each of 2 receivers

e range sampling rate up to 50 MHz

« full-bandwidth digitized data saved to disk, archived dntd

CD
Width of resolution ce|l73 - 77 m
Antenna Significant wave heigh0.84 m
¢ 2.4 m diameter parabolic dish Wind|0 km/h, coming from 230 Deg.
« pencil beam, beamwidth .9
* 44 dB gain Data set H: High sea state, sampling freg. 1000 Hz.
+ sidelobes <-30 dB Date and time (UTGNovember 17, 1993, 20:49
» cross-polarization isolation RF frequency9.39 GHz
« computer controlled positioner Pulselength200 ns

Pulse repetition frequengy000 Hz

L] - 0 i 1 .
3°to +9C in elevation Radar azimuth angd90 Deg.

» rotation through 360in azimuth, 0 to 10 rpm Grazing anglel.9 Deg.
Rangg900-1110 m, sampled as 14 rangebins
General Range resolutiofB0 m, but sampled at 15 m intervals

Radar beamwidtfl Deg.
Width of resolution ce|l16 - 19 m
Significant wave height..82 m
Wind| 22 km/h (gusts to 39), coming from 220
Deg.

o
=

¢ radar system configuration and operation completely und
computer control
e user operates radar within an IDL environment
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