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Abstract

In a recent paper [1], we derived a new discrete-time Bayesian filter, which we have named the cubature

Kalman filter (CKF). In this paper, we extend this nonlinear filter to deal with a classical state estimation

problem, whose state-space model is described by a continuous-time process equation and a discrete-time

measurement equation. For a reliable implementation of the CKF in a finite word-length machine, the

CKF is structurally modified to propagate the square-roots of the covariances; the resulting filter is named

the square-root cubature Kalman filter (SCKF). For the ‘hybrid’ state-space model under consideration,

the time-update of the SCKF is computationally expensive. To mitigate this practical issue, we modify the

SCKF to obtain a cost-reduced SCKF, whose time-update recursively propagates a set of cubature points

without estimating the predicted mean and covariance at every small time-step. The two new formulations–

the SCKF and the cost reduced SCKF– are validated in tracking a ballistic target on reentry. The results,

presented herein, indicate that the SCKF and its cost reduced variant perform equally well and markedly

outperform existing algorithms.

Index Terms

Bayesian filters, Cubature Kalman filter, Itô-Taylor expansion, Nonlinear filtering, Square-root filtering.

I. INTRODUCTION

Nonlinear-filtering problems are typically described by a state-space model consisting of a pair of

equations: process equation and measurement equation. In many practical problems, the process equation

is often derived from the underlying physics of a dynamic system, and expressed in the form of a set

of differential equations. Since the sensors are digital devices, the measurements are available at discrete

times. In this ‘hybrid’ setting, we have a state-space model with a continuous-time process equation and

a discrete-time measurement equation. This hybrid-setting often arises in signal processing [5], control

[3] and finance [18].
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Consider a state process generated from

dxt = f(xt, t)dt +
√

Qdβt, (1)

where

• xt ∈ Rn is the state of the system to be estimated at time t;

• f : Rn → Rn is a known function;

• Q ∈ Rn×n is the diffusion matrix, also called the spectral density matrix or the gain matrix of process

noise; and

• βt ∈ Rn denotes the standard Brownian motion with increments dβt being independent of xt.

Equation (1) is the simplest case of a more general Itô’s stochastic differential equation. It can equivalently

be written in the form:

dxt

dt
= f(xt, t) +

√
Qwt, (2)

where wt ∈ Rn is the standard Gaussian noise and is interpreted as the time-derivative of the Brownian

motion. This second equation (2) looks physically more meaningful than (1)– It is easy to communicate

the physics of the problem that the plant is modeled by a deterministic equation driven by stochastic noise.

However, (2) is mathematically less rigorous than (1) and it does not have a solution because
∫

wtdt is

not defined, whereas
∫

dβt is well defined [18]. In the nonlinear filtering literature, Equations (1) and (2)

have been interchangeably used.

In the Bayesian filtering paradigm, the conditional density of the state given the measurements, also

called the posterior density of the state, provides a complete statistical description of the state at that time.

The optimal continuous-discrete Bayesian filter consists of the following:

• Propagation of the ‘old’ posterior density between the measurement instants

• Use of Bayes’ rule to update this propagated density at the measurement instants

Now, let us look at the propagation of the old posterior density. It is well known that for the process

equation (1), the propagation or the temporal evolution of the probability density of the state at time t

obeys the famous Fokker-Planck equation, also called Kolmogorov’s forward equation [12]:

∂p

∂t
= −

n∑
i=1

∂(pfi)

∂xi

+
1

2

n∑
i,j=1

∂2
(
(Q)ijp

)

∂xi∂xj

, (3)
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where p = p(xt|Dk) with t ≤ (k+1) and the measurement history up to time k, Dk = {zi, i = 1, 2 . . . k}.

Let the measurement zk+1 be generated from the measurement equation:

zk+1 = h(xk+1, k + 1) + vk+1, (4)

where vk+1 is Gaussian noise with mean zero and covariance Rk+1.

On the receipt of a measurement zk+1, using Bayes’ rule, we get the posterior density

p(xk+1|Dk+1) =
1

ck+1

p(xk+1|Dk)p(zk+1|xk+1), (5)

where the measurement likelihood function

p(zk+1|xk+1) = N (zk+1;h(xk+1, k + 1),Rk+1),

with N (., .) being the conventional symbol for a Gaussian density, the normalizing constant

ck+1 =

∫

Rn

p(xk+1|Dk)p(zk+1|xk+1)dxk+1, (6)

and the predictive density p(xk+1|Dk) is obtained from (3).

The pair of equations (3)-(5) describes the continuous-discrete Bayesian filter only in conceptual

terms. The reason is that there is no guarantee that the new posterior will remain closed with a finite

summary statistic expressed in terms of (quasi-)moments. Specifically, the Fokker-Planck equation has to

be approximately solved except in the following two cases– For a linear process equation, (3) reduces to

the time-update of the Kalman-Bucy filter [14]; whereas for a process equation exhibiting nonlinearity of

Beneš-type, it reduces to the time-update of the Beneš filter [6]. In [8], Daum has further extended the

class of nonlinear dynamic systems that admit a sufficient statistic of a constant finite dimension.

For a generic nonlinear setting, we have to resort to numerical methods to approximately compute both

the predictive density and the posterior density. The novel contributions of this paper are as follows:

• Use of the Itô-Taylor expansion of order 1.5 to transform a continuous-discrete filtering problem into

a more familiar discrete-time filtering problem for the first time in the nonlinear filtering literature.

• Development of a new square-root cubature filter for improved reliability.

• Development of a cost-reduced square-root cubature filter that significantly reduces the computational

cost associated with the time-update of the square-root cubature filter.
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The paper is structured as follows: Section II reviews the existing approximate solution to nonlinear

continuous-discrete stochastic systems based on the extended Kalman filter. Section III contains the

development of the cubature Kalman filter (CKF) for the considered ‘hybrid’ stochastic nonlinear systems.

Section IV presents a square-root extension of the CKF for improved reliability in a limited precision

system. The time-update of the square-root CKF is computationally the most costly part of the algorithm.

In Section V, we derive a cost-reduced square-root CKF, whose time-update recursively propagates a set

of cubature points without estimating the predicted mean and covariance at every time-step. Section VI

is devoted to an experiment, which compares the proposed solutions with existing solutions in tracking a

ballistic target on reentry. Section VII concludes the paper with some final remarks.

II. APPROXIMATE SOLUTIONS: A BRIEF SURVEY

In this section, we first review the most established, traditional filtering algorithm known as the extended

Kalman filter (EKF). Suppose that the predictive density is Gaussian with the mean x̂t|k = E[xt|Dk] and

covariance Pt|k = E[(xt− x̂t|k)(xt− x̂t|k)T |Dk], where t ≥ k. In the time-update, from (3), the following

mean-covariance pair is obtained in a differential equation form [9], [12]:

dx̂t

dt
≈ f(xt, t) (7)

dPt

dt
≈ P T

t Jf,t + JT
f,tPt + Q, (8)

where Jf is the Jacobian of f(.) with respect to xt. Assuming Jf remains constant over the time interval

[k, k + δ], an approximate solution to (8) at time (k + δ) is given by

Pk+δ|k ≈ ΦPk|kΦ
T + δQ, (9)

where

Φ = In + δJf,k +
1

2
δ2J2

f,k

with In denoting the conventional symbol for an n-dimensional identity matrix. To compute the predicted

mean x̂k+δ|k from (7), numerical methods such as the Euler method and the family of Runge-Kutta methods

can be used. When the Euler method is used, the predicted state estimate at time (k + δ) is given by

x̂k+δ|k = x̂k|k + f(x̂k|k, k). (10)
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The predicted state estimate (10) and its covariance (9) collectively form the time-update of the standard

EKF. They are recursively propagated until time (k + 1). On the receipt of a new measurement zk+1 at

time (k + 1), the measurement-update of the standard EKF is used to obtain the first two moments of the

posterior density [9], [12].

As an alternative to the time-update just mentioned, the Itô-Taylor expansion of order 0.5 can be used to

discretize the continuous-time Itô process equation (1) [15]. Subsequently, numerical integration methods

can be used to estimate the predicted state and its covariance. According to Section 10.2 of [15], for the

time interval [k, k + δ], applying the Itô-Taylor expansion to (1) leads to

xk+δ ≈ xk + δf(xk, k) +
√

δQqk, (11)

where qk = (βk+δ−βk) is the standard Gaussian random variable. The approximate process equation (11)

can be considered as a discrete-time counterpart of the Itô-type process equation (1). This discretization

scheme is strongly convergent with the order of 0.5. That is, we may say that

E[|xt − x̂t|] ≤ cδ0.5,

where

• xt is the exact solution;

• x̂t is the estimate due to the Itô-Taylor expansion of order 0.5 at time t; and

• c is a constant that does not depend on δ.

In the literature on nonlinear filtering, researchers in the past have often referred to this expansion in the

name of the Euler expansion [11], [16].

To compute the predicted state estimate more accurately before receiving the measurement at time step

(k+1), several integration steps are performed within the measurement-time interval [k, k+1] as described

below:

Time Update: From time step k to (k + 1)

1) Divide the time interval [k, k + 1] into M equal subintervals, each of length δ.

2) Given xk ∼ N (x̂k|k,Pk|k) at time t = k, recursively estimate the predicted state at the m-th
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intermediate time step as (m = 1, 2, . . . M):

x̂k+mδ|k = E
[
xk+mδ|Dk

]

≈
∫

Rn

[x + δf(x, k + (m− 1)δ)]N (x; x̂k+(m−1)δ|k,Pk+(m−1)δ|k)dx (12)

3) Recursively estimate the corresponding predicted error covariance (m = 1, 2, . . .M ):

Pk+mδ|k = E
[
(xk+mδ − x̂k+mδ|k)(xk+mδ − x̂k+mδ|k)

T |Dk

]

≈ δQ +

∫

Rn

([x + δf(x, k + (m− 1)δ)]− x̂k+mδ|k)([x + δf(x, k + (m− 1)δ)]− x̂k+mδ|k)
T

×N (x; x̂k+(m−1)δ|k,Pk+(m−1)δ|k)dx. (13)

To numerically compute the integrals in (12)-(13), the Gauss-Hermite quadrature rule is used in [16]. As

a computationally efficient alternative to the Gauss-Hermite quadrature rule, we may also use the third-

degree spherical-radial cubature rule, which is briefly described in the next section. When m = M or at

time (k+1), we have the Gaussian-distributed predicted state variable with the mean x̂k+1|k and covariance

Pk+1|k, which is finally updated using the measurement zk+1.

III. CUBATURE KALMAN FILTERING

In this section, we present a powerful numerical tool, called the Cubature Kalman Filter (CKF) for

continuous-discrete systems. The CKF is the closest known approximation to the discrete-time Bayesian

filter that could be designed in a nonlinear setting under the Gaussian assumption [1], [2]. The heart of

the CKF is a third-degree spherical-radial cubature rule that approximates integrals, whose integrands are

of the form:

nonlinear function× Gaussian.

The cubature rule uses a set of 2n equally weighted cubature points, where n is the dimension of the

integration domain. For example, we use the cubature rule to approximate an n-dimensional Gaussian

weighted integral as follows:

∫

Rn

f(x)N (x; µ, Σ)dx ≈ 1

2n

2n∑
i=1

f(µ +
√

Σξi).
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where Σ =
√

Σ
√

Σ
T

and the cubature points [1], [2]:

ξi =





√
nei, i = 1, 2 . . . n

−√nei−n, i = n + 1, n + 2 . . . 2n.

The cubature rule is exact for nonlinear functions belonging to monomials of degree three or less. Next,

we discuss on how to transform the CKF into a useful tool in a continuous-discrete system under two

different steps: time-update and measurement-update.

A. Time Update

In this first step, we update the old posterior density of the state before receiving a new measurement,

and obtain the predictive density. To discretize the process equation (1) in the time domain, we apply the

Itô-Taylor expansion that is strongly convergent with the order of 1.5 to (1) at time t = (k + δ) and get

(Section 10.4 of [15])

xk+δ = xk + δf(xk) +
1

2
δ2(L0f(xk))

︸ ︷︷ ︸
J(xk)

+
√

Qδw + (Lf(xk))δy, (14)

where

• The two operators L0 and Lj (j = 1, 2 . . . n) are defined as follows:

L0 =
∂

∂t
+

n∑
i=1

f i ∂

∂xi
+

1

2

n∑
j,p,q=1

√
Q

p,j√
Q

q,j ∂2

∂xp∂xq

Lj =
n∑

i=1

√
Q

i,j ∂

∂xi
;

• By the notation Lf , we denote a square matrix with its (i, j)−th element being Ljf i, (i, j = 1, . . . , n);

• The function

J(xk) = xk + δf(xk) +
1

2
δ2(L0f(xk)); (15)

• The pair of correlated Gaussian random variables (δw, δy) can be generated from a pair of indepen-

dent standard Gaussian random variables (u1,u2) as follows:

δw =
√

δu1 ∼ N (0, δIn)

δy =
1

2
δ3/2(u1 +

u2√
3
) ∼ N (0,

δ3

3
In)
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with

E[δwδyT ] =
1

2
δ2In.

Given the statistic of xk such that xk ∼ N (x̂k|k,Pk|k), we write the predicted state estimate

x̂k+δ|k = E[xk+δ|Dk]

≈ E[J(xk) +
√

Qδw + (Lf(xk))δy|Dk]

Because the noise terms are independent and zero-mean Gaussian, we further simplify matters by writing

x̂k+δ|k = E[J(xk)|Dk]

=

∫

Rn

J(xk)N (xk; x̂k|k,Pk|k)dxk. (16)

Similarly, we write the predictive state-error covariance

Pk+δ|k = E
[
(xk+δ − x̂k+δ|k)(xk+δ − x̂k+δ|k)

T |Dk

]

≈
∫

Rn

J(xk)J
T (xk)N (xk; x̂k|k,Pk|k)dxk +

δ3

3

∫

Rn

(Lf(xk))(Lf(xk))
TN (xk; x̂k|k,Pk|k)dxk

+
δ2

2

[√
Q

( ∫

Rn

Lf(xk)N (xk; x̂k|k,Pk|k)dxk

)T
+

( ∫

Rn

Lf(xk)N (xk; x̂k|k,Pk|k)dxk

)√
Q

T
]

−x̂k+δ|kx̂
T
k+δ|k + δQ. (17)

To numerically compute the integrals present in (16) and (17), we use the third-degree cubature rule.

B. Measurement Update

In this second step, on the receipt of a new measurement zk+1, we update the predictive density

and obtain the posterior density of the current state. In order to proceed with this step, we must make

certain assumptions as described in the sequel. It is well known that the innovations sequence is a white

sequence with zero mean [5]. Under the reasonable assumption that it is Gaussian, the innovations become

independent of each other, and we write the innovations density

p(εk+1) = N (εk+1;0,Pzz,k+1|k), (18)
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with the second-order moment of the innovations or simply the innovations covariance

Pzz,k+1|k = E[(zk+1 − ẑk+1|k)(zk+1 − ẑk+1|k)
T |Dk+1]

=

∫

Rn

h(x, k + 1)hT (x, k + 1)N (x; x̂k+1|k,Pk+1|k)dx− ẑk+1|kẑ
T
k+1|k + Rk+1, (19)

where the predicted measurement

ẑk+1|k =

∫

Rn

h(x, k + 1)N (x; x̂k+1|k,Pk+1|k)dx. (20)

Rearranging (18), we get

p(εk+1) = N (zk+1 − ẑk+1|k;0,Pzz,k+1|k)

= N (zk+1; ẑk+1|k,Pzz,k+1|k). (21)

From (21), it is understood the innovations density p(εk+1), and the filter likelihood density p(zk+1|Dk+1)

are related by one-to-one transformation.

To develop an approximate Bayesian filter, we further assume that the state process and the measure-

ments process given the past measurement history, can jointly be approximated by Gaussian. That is, we

write

p
(

[xT
k+1 zT

k+1]
T |Dk+1

)
= N

(( xk+1

zk+1

)
;
( x̂k+1|k

ẑk+1|k

)
,
( Pk+1|k Pxz,k+1|k

P T
xz,k+1|k Pzz,k+1|k

))
, (22)

where the cross-covariance

Pxz,k+1|k =

∫

Rn

xhT (x, k + 1)N (x; x̂k+1|k,Pk+1|k)dx− x̂k+1|kẑ
T
k+1|k. (23)

The assumption that the joint state-measurement process given the past measurement history is Gaussian

implies both the predictive and innovations densities are Gaussian. Using Bayes’ rule, we write the

posterior density

p(xk+1|Dk+1) = p(xk+1|zk+1,Dk)

=
p(xk+1, zk+1|Dk)

p(zk+1|Dk)
. (24)
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On the receipt of a new measurement zk+1, substituting (21) and (22) into (24) yields

p(xk+1|Dk+1) = N (xk+1; x̂k+1|k+1,Pk+1|k+1), (25)

where

x̂k+1|k+1 = x̂k+1|k + Wk+1(zk+1 − ẑk+1|k)

Pk+1|k+1 = Pk+1|k −Wk+1Pzz,k+1|kW
T
k+1

Wk+1 = Pxz,k+1|kP
−1
zz,k+1|k.

As mentioned previously, the CKF solves the problem of how to compute Gaussian-weighted integrals

whose integrands are all of the form nonlinear function × Gaussian density present in (12), (13), (19),

(20) and (23) using the third-degree spherical-radial cubature rule [7], [19].

Below, we summarize the cubature Kalman filtering algorithm for continuous-discrete stochastic sys-

tems:

CKF– Time Update

Initialize m to be zero.

1) Factorize

Pk+mδ|k = Sk+mδ|kS
T
k+mδ|k.

2) Evaluate the cubature points (i=1,2,. . . ,2n)

Xi,k+mδ|k = Sk+mδ|kξi + x̂k+mδ|k.

3) Evaluate the following pair of propagated cubature point sets (i=1,2,. . . ,2n)

X∗
i,k+(m+1)δ|k = J(Xi,k+mδ|k)

Y∗
i,k+(m+1)δ|k = Lf(Xi,k+mδ|k).

4) Estimate the predicted state

x̂k+(m+1)δ|k =
1

2n

2n∑
i=1

X∗
i,k+(m+1)δ|k.
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5) Estimate the predicted error covariance

Pk+(m+1)δ|k =
1

2n

2n∑
i=1

X∗
i,k+(m+1)δ|kX∗T

i,k+(m+1)δ|k +
δ3

6n

2n∑
i=1

Yi,k+(m+1)δ|kYT
i,k+(m+1)δ|k +

δ2

4n

[√
Q(

2n∑
i=1

YT
i,k+(m+1)δ|k) + (

2n∑
i=1

Yi,k+(m+1)δ|k)
√

Q
T ]− x̂k+(m+1)δ|kx̂

T
k+(m+1)δ|k

+δQ. (26)

6) Increase m by one and repeat the steps (1)-(5) until m reaches M (that is, until time (k + 1)).

CKF– Measurement Update

1) Factorize

Pk+1|k = Sk+1|kS
T
k+1|k.

2) Evaluate the cubature points (i=1,2,. . . ,2n)

Xi,k+1|k = Sk+1|kξi + x̂k+1|k.

3) Evaluate the propagated cubature points (i=1,2,. . . ,2n)

Zi,k+1|k = h(Xi,k+1|k, k + 1).

4) Estimate the predicted measurement

ẑk+1|k =
1

2n

2n∑
i=1

Zi,k+1|k.

5) Estimate the innovation covariance matrix

Pzz,k+1|k =
1

2n

2n∑
i=1

Zi,k+1|kZT
i,k+1|k − ẑk+1|kẑ

T
k+1|k + Rk+1.

6) Estimate the cross-covariance matrix

Pxz,k+1|k =
1

2n

2n∑
i=1

Xi,k+1|kZT
i,k+1|k − x̂k+1|kẑ

T
k+1|k.
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7) Estimate the cubature Kalman gain

Wk+1 = Pxz,k+1|kP
−1
zz,k+1|k. (27)

8) Estimate the updated state

x̂k+1|k+1 = x̂k+1|k + Wk+1(zk+1 − ẑk+1|k).

9) Estimate the corresponding error covariance

Pk+1|k+1 = Pk+1|k −Wk+1Pzz,k+1|kW
T
k+1. (28)

IV. SQUARE-ROOT FILTERING FOR IMPROVED RELIABILITY

The CKF performs numerically sensitive operations such as matrix inversion (27) and subtraction of

two positive definite matrices (28). These operations can lead to numerical errors that are generally

manifested in the appearance of covariances which fail to be symmetric and positive (semi-)definite.

In order to preserve the symmetry and positive (semi-)definiteness and to improve numerical accuracy,

various ad-hoc methods have been introduced in the literature on Bayesian filtering. Some of them include

[10]:

• Measurement-update with a sequence of scalar measurements in a preferred order

• Decoupled or quasi-decoupled covariances

• Symmetrization of covariances based on the formula P
′
= 1

2
(P + PT )

• Computation of only upper triangular entries of covariances

• Tikhonov regularization

• Joseph’s covariance update

• Use of large process and measurement noise covariances

• Use of doubled-precision arithmetic

In contrast, as a systematic solution to preserve the properties of a covariance matrix and improve

numerical accuracy, square-root algorithms, which propagate the square-roots of various error covariance

matrices, have been proposed [13]. Following this line of thinking, we can also structurally reformulate

the CKF developed for a continuous-discrete state-space model. A covariance matrix P of the CKF is
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often written in the form

P = SoSo
T , (29)

where P ∈ Rn×n, So ∈ Rn×m, m > n, is a ‘fat’ matrix. Though So in (29) can be considered as

a square-root of P, we prefer to keep the square-root as a triangular matrix of the dimension n × n

for computational reasons. The transformation of So into a triangular matrix Sn ∈ Rn×n is performed

by a triangularization algorithm, e.g., Gram-Schmidt based QR decomposition. When the matrix So
T is

decomposed into an orthogonal matrix Q ∈ Rm×n and an upper triangular matrix R ∈ Rn×n such that

So
T = QR, we get

P = SoSo
T = RTQTQR = RTR = SnSn

T ,

where the ‘new’ square-root of P, Sn = RT . In this paper, we denote this procedure as

Sn = Tria(So),

where So could be referred to as the ‘old’ square-root of P. In what follows, we illustrate how this

triangularization algorithm can be fitted into the two steps of a square-root cubature Kalman filter (SCKF),

namely, the time-update and the measurement-update.

A. Time update

From (26), we see that the predicted error covariance Pk+(m+1)δ|k does not admit a simple expression

as a sum of some squared matrices, because {Yi}s are matrices of dimension (n×n) rather than vectors.

This suggests that finding a square-root of the predicted error covariance is difficult in its plain form.

However, this difficulty can be circumvented without loss of accuracy by replacing the factor Lf(xk) by

Lf(x̂k|k) in (14). Then, the predicted mean is given by

x̂k+δ|k =

∫

Rn

J(xk)N (xk; x̂k|k,Pk|k)dxk (30)

whereas the error covariance is given by

Pk+δ|k =

∫

Rn

J(xk)J
T (xk)N (xk; x̂k|k,Pk|k)dxk +

δ3

3
(Lf(x̂k|k))(Lf(x̂k|k))

T

+
δ2

2

[√
Q

(
Lf(x̂k|k)

)T
+

(
Lf(x̂k|k)

)√
Q

T
]
− x̂k+δ|kx̂

T
k+δ|k + δQ. (31)
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The integrals present in the predicted state (30) and its error covariance (31) can be approximated by the

cubature rule. Moreover, a square-root factor of the error covariance can be constructed in a straightforward

way (see the time update of the SCKF shown at the end of this section).

B. Measurement-update

Recall from the cubature Kalman filtering algorithm that the following three covariance matrices can

also be expressed in a squared-matrix form:

Pk+1|k = Xk+1|kX
T

k+1|k

Pzz,k+1|k = Zk+1|kZ
T

k+1|k + ST
R,k+1SR,k+1

Pxz,k+1|k = Xk+1|kZ
T

k+1|k,

where the weighted-centered (prior mean is subtracted off) matrices

Xk+1|k =
1√
2n

[X1,k+1|k − x̂k+1|k X2,k+1|k − x̂k+1|k . . . X2n,k+1|k − x̂k+1|k]

Zk+1|k =
1√
2n

[Z1,k+1|k − ẑk+1|k Z2,k+1|k − ẑk+1|k . . . Z2n,k+1|k − ẑk+1|k].

Equivalently, the above three equations can be combined together and written in the squared-matrix form:


 Pzz,k+1|k Pzx,k+1|k

Pxz,k+1|k Pk+1|k


 =


 Zk+1|k SR,k+1

Xk+1|k O





 Zk+1|k SR,k+1

Xk+1|k O




T

, (32)

where O ∈ Rnx×nz is the zero matrix. Applying the triangularization algorithm on the square-root factor

available on the right-hand side yields

Tria


 Zk+1|k SR,k+1

Xk+1|k O


 =


 A O

B C


 , (33)
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where A ∈ Rnz×nz , and C ∈ Rnx×nx are lower-triangular matrices, and B ∈ Rnx×nz . Hence, we rewrite

(32) in a ‘new’ squared-matrix form as follows:


 Pzz,k+1|k Pzx,k+1|k

Pxz,k+1|k Pk+1|k


 =


 A O

B C





 A O

B C




T

=


 AAT ABT

BAT BBT + CCT


 . (34)

Recall also from Section III that the cubature Kalman gain is given by

Wk+1 = Pxz,k+1|kP
−1
zz,K+1|k. (35)

Substituting the results obtained in (34) into (35) yields

Wk+1 = BAT (AAT )−1

= BA−1 (36)

Because A is a lower-triangular matrix, we may efficiently compute Wk+1– Assume that the new symbol /

represents the matrix right-divide operator; by writing BA−1 to be B/A, we essentially apply the forward

substitution algorithm to compute Wk+1. We therefore write the posterior state estimate

x̂k+1|k+1 = x̂k+1|k + (B/A)(zk+1 − ẑk+1|k). (37)

Let us now see how the posterior error covariance Pk+1|k+1 can be written in a matrix-squared form.

Recall from Section III that Pk+1|k+1 is given by

Pk+1|k+1 = Pk+1|k −Wk+1Pzz,k+1|kW
T
k+1. (38)

Substituting the results obtained in (34) into (38) yields

Pk+1|k+1 = (BBT + CCT )−BA−1(AAT )(BA−1)T

= CCT .

Hence, the ‘new’ square-root factor of Pk+1|k+1 is C.

To sum up, given the weighted-centered matrices Xk+1|k, and Zk+1|k, and the square-root factor of the
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measurement noise covariance SR,k+1, the heart of the measurement-update step of the SCKF resides in

computing the matrices A,B and C as shown by (33), using a triangualriation algorithm. Subsequently,

we compute the updated state estimate x̂k+1|k+1 as shown by (37) and the square-root of the corresponding

posterior error covariance, which is simply given by C.

Below, we summarize the square-root cubature Kalman filter (SCKF) writing the steps only when they

differ from the CKF:

SCKF– Time Update

Initialize m to be zero.

1) Skip the factorization step (1) because the square-root of the error covariance Sk+mδ|k is available.

Compute steps (2)-(4).

2) Estimate the square-root factor of the predicted error covariance

Sk+(m+1)δ|k = Tria([X ∗
k+(m+1)δ|k

√
δ
(√

Q +
δ

2
Lf(x̂k+mδ|k)

) √
δ3

12
Lf(x̂k+mδ|k)]),

where the weighted centered matrix

X ∗
k+(m+1)δ|k =

1√
2n

[X∗
1,k+(m+1)δ|k − x̂k+(m+1)δ|k X∗

2,k+(m+1)δ|k − x̂k+(m+1)δ|k . . .

X∗
2n,k+(m+1)δ|k − x̂k+(m+1)δ|k].

3) Increase m by one and repeat the above steps until m reaches M (that is, until time (k + 1)).

SCKF– Measurement Update

1) Evaluate the cubature points (i=1,2,. . . 2n)

Xi,k+1|k = Sk+1|kξi + x̂k+1|k.

2) Evaluate the propagated cubature points (i=1,2,. . . 2n)

Zi,k+1|k = h(Xi,k+1|k, k + 1).
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3) Estimate the predicted measurement

ẑk+1|k =
1

2n

2n∑
i=1

Zi,k+1|k.

4) Construct the following two weighted-centered matrices:

Xk+1|k =
1√
2n

[X1,k+1|k − x̂k+1|k X2,k+1|k − x̂k+1|k . . . X2n,k+1|k − x̂k+1|k].

Zk+1|k =
1√
2n

[Z1,k+1|k − ẑk+1|k Z2,k+1|k − ẑk+1|k . . . Z2n,k+1|k − ẑk+1|k].

5) Compute the matrices A,B, and C using the triangularization algorithm:

Tria


 Zk+1|k SR,k+1

Xk+1|k O


 =


 A O

B C


 .

6) Estimate the cubature Kalman gain

Wk+1 = B/A.

7) Estimate the updated state

x̂k+1|k+1 = x̂k+1|k + Wk+1(zk+1 − ẑk+1|k).

8) The square-root factor of the corresponding error covariance is given by

Sk+1|k+1 = C.

Remarks:

• A comparison of the measurement-update step of the existing SCKF derived in [1] with that of the new

variant derived in this paper reveals that both algorithms approximately require a same computational

cost of (6n3 + 10n2m) flop counts (or simply flops) per update cycle, where n and m denote the

dimensions of the state vector and the measurement vector, respectively. In computing these costs,

note that we do not account for flops associated with problem-specific function evaluations, which

are common to both algorithms (see Appendix A). However, the derivation of the new variant is more

elegant– it applies the triangularization algorithm to the array of matrices only once; in so doing, the
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Tim
e

State  Trajectory

Fig. 1. Time-update of the CR-SCKF illustrating how the cubature points in the two-dimensional state-space are propagated in the
intermediate steps of the measurement interval [k, k+2δ]; The circles represent cubature points; the new cubature point set at time t = k+δ
is computed by simply propagating the old cubature point set at time k through the truncated Itô-Taylor expansion of the continuous-time
process equation.

new variant avoids an explicit computation of the cross-covariance matrix and a repeated use of the

forward substitution algorithm in computing the cubature Kalman gain.

• It is also interesting to note that the new variant closely resembles the square-root formulation of

the linear Kalman filter proposed by Kaminski et al. [13]. A key exception is that in the new SCKF,

various covariances are expressed in the form of the outer products of weighted-centered matrices.

V. COST-REDUCED SQUARE-ROOT CUBATURE KALMAN FILTERING

In this section, we derive a Cost-Reduced Square-root Cubature Kalman Filter (CR-SCKF) that

drastically reduces the computational cost of the SCKF. The only difference between the SCKF and the

CR-SCKF lies in propagating second-order statistics in the time-update. Assuming the use of an M -step

Itô-Taylor approximation scheme, the CR-SCKF performs the following:

CR-SCKF– Time Update: From time k to (k + 1)

1) Given the cubature point set representing the posterior density at time k, recursively propagate this

point set through the noise-free process model (15) up to M steps forward (see Fig. 1).

2) Compute the predicted state using the set of cubature pints available at time (k + 1).
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3) Compute the square-root of the predicted state error covariance after adding a discrete-time process

noise covariance

Qd = ∆Q +
∆3

3
(Lf(x̂k|k))(Lf(x̂k|k))

T +
∆2

2

[√
Q

(
Lf(x̂k|k)

)T
+

(
Lf(x̂k|k)

)√
Q

T
]

to the filter-estimated error covariance, where ∆ is the measurement sampling time, and the process

noise gain matrix Q is defined in Section I. To be specific, the square-root covariance is given by

Sk+1|k = Tria([X ∗
k+Mδ|k

√
∆

(√
Q +

∆

2
Lf(x̂k|k)

) √
∆3

12
Lf(x̂k|k)]),

where the weighted centered matrix

X ∗
k+Mδ|k =

1√
2n

[X∗
1,k+Mδ|k − x̂k+1|k X∗

2,k+Mδ|k − x̂k+1|k . . . X∗
2n,k+Mδ|k − x̂k+1|k].

The above mentioned steps are mathematically equivalent to the following statement:

Given xk ∼ N (x̂k|k,Pk|k) at time k, compute the second-order statistics of the composite

function J(J(J . . .J(xk)))︸ ︷︷ ︸
M times

using the cubature rule and fudge the estimated covariance with

noise covariances.

In so doing, we perform only one time-update instead of M time-updates during the interval of two

consecutive measurement instants. Let us now focus on the amount of computational saving achieved

by the CR-SCKF. Under the reasonable assumption that the dimension of the state-vector is higher than

that of the measurement-vector, the time-update of the SCKF is computationally more expensive than the

measurement-update (see Appendix A). To get a handle on the computational cost of the time-update of

the SCKF, let us assume that the state vector dimension n is 10 and an M -step Itô-Taylor scheme is

used to approximate the continuous-time process equation. Because the SCKF performs M time-updates

between measurement instants, it requires 8M kflops (= 8 × n3M). On the other hand, the CR-SCKF

performs only one time-update and thus requires 8 kflops (= 8 × n3). For the example of M = 64,

the SCKF costs nearly 64 times the CR-SCKF. Note that in computing these costs, we ignore the cost

associated with function-evaluations because it is problem-dependant. However, the function-evaluations

cost is almost the same for both the SCKF and the the CR-SCKF.
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Fig. 2. Flowchart of the continuous-discrete CR-SCKF.

To be more specific in terms of computation time, let us assume that the SCKF and the CR-SCKF

are committed to an Intel Pentium Core Duo processor with a cycle speed of 2Gflops/s. In this case,

the computation times of the time-updates of the SCKF and the CR-SCKF are 256 micro seconds (=

512kflops/2GHz), and 4 micro seconds (= 8kflops/2GHz), respectively. We thus save a computation time

of 0.25 milliseconds in each recursion cycle. This could be a monumental time reduction for a radar

operating at a measurement sampling frequency of hundreds of kHz. Indeed, for an increased number of

steps, that is M À 64, the use of the CR-SCKF will save a considerable computation time.

A block diagram/flowchart of the CR-SCKF is shown in Fig. 2. Note that the number of iterations

between two consecutive measurements, M , does not need to be fixed. For aperiodically sampled data,

we perform the time update and then the measurement update as soon as a new measurement is received.

Generally speaking, the state estimates can also be made available at points on as fine a division of the

time line as we desire, independently of the measurement sampling period, which may not be up to us

to choose. This can be quite useful in a situation where a slowly scanning radar measures range and/or

azimuth in substantially longer time intervals.
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VI. APPLICATION TO TRACKING A BALLISTIC TARGET ON REENTRY

Tracking ballistic targets is one of the most extensively studied applications considered by the aerospace

engineering community (see the survey paper [17]). The goal of this research is to track, intercept, and

destroy ballistic targets before they hit the ground. The flight of a ballistic target, from launch to impact,

consists of three phases: the boost phase, the coast phase and the reentry phase. In this paper, we limit

our focus to tracking a ballistic target on reentry.

Reentry Scenario. When a ballistic target reenters the atmosphere after having traveled a long distance,

its speed is high and the remaining time to ground impact is relatively short. In the experiment, we

consider a ballistic target falling vertically as shown in Fig. 3. In the reentry phase, two types of forces

are in effect– the most dominant is drag, which is a function of speed and has a substantial nonlinear

variation in altitude; the second force is due to gravity, which accelerates the target toward the center of

the earth. This target tracking problem is highly difficult because the target’s dynamics change rapidly.

Under the influence of drag and gravity acting on the target, the following differential equation governs

its motion [4], [9]:

ẋ1 = −x2

ẋ2 = −ρ(x1)x
2
2x3︸ ︷︷ ︸

drag

+g

ẋ3 = 0,

where

• x1 is altitude;

• x2 is velocity;

• x3 is a constant ballistic coefficient that depends on the target’s mass, shape and cross-sectional area;

• ρ(x1) is air density and modeled as an exponentially decaying function of altitude x1:

ρ(x1) = ρ0exp(−γx1),

where the proportionality constant ρ0 = 1.754 and γ = 1.49× 10−4; and

• g is gravity (g = 9.8ms−2).

By choosing the state vector x = [x1 x2 x3]
T , the process equation in continuous time t can be expressed
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Fig. 3. Geometry of the ballistic target tracking scenario.

by

ẋt = f(xt), (39)

where f(xt) = [−x2 −ρ(x1)x
2
2x3 +g 0]T . In order to account for imperfections in the process model (e.g.,

lift force, small variations in the ballistic coefficient, and spinning motion), we add zero-mean Gaussian

process noise to (40) and obtain a new process equation:

ẋt = f(xt) +
√

Qwt, (40)

where the gain matrix Q = diag([σ2
1 σ2

2 σ2
3]).

For the experiment at hand, a radar was located at (0, H) and equipped to measure the range r at a

measurement time interval of ∆. Hence, the measurement equation is given by

rk =
√

M2 + (xk[1]−H)2 + vk, (41)

where the measurement noise vk ∼ N (0, R); and M is the horizontal distance (see Fig. 3).
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Fig. 4. An example trajectory of the ballistic object Vs. time.

Experimental Data.

H = 30m

M = 30km

Q = diag([(50m)2s−1 (10ms−1)2s−1 0s−1])

R = (30m)2

∆ = 1s
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The true initial state was assumed to be

x0 = [61km 3048m/s 2.56× 10−4]T

For the purpose of generating the ballistic target’s trajectory, we used the Itô-Taylor expansion order 1.5

with 64 time-steps between two consecutive measurements. For this problem, the matrices Lf and L0f

are given by

Lf =




0 −σ2 0

ρ(x1)x
2
2x3γσ1 −2ρ(x1)x2x3σ2 −ρ(x1)x

2
2σ3

0 0 0




L0f =




ρ(x1)x
2
2x3 − g

ρ(x1)x2x3

(
2ρ(x1)x

2
2x3 − γx2

2 − 2g
)

0


 .

An example of kinematic parameters for a representative target trajectory is shown in Fig. 4. As can be

seen from this figure, the velocity remains constant in the first 10 seconds of the ballistic flight on reentry,

followed by a sharp drop due to deceleration caused by the air resistance at lower altitudes. To track the

ballistic target, the following Bayesian filters were employed:

• The extended Kalman filter (EKF)

• The square-root cubature Kalman filter using the Itô-Taylor expansion of order 0.5 (SCKF (IT-0.5))

• The square-root cubature Kalman filter using the Itô-Taylor expansion of order 1.5 (SCKF (IT-1.5))

• The cost reduced square-root cubature Kalman filter using the Itô-Taylor expansion of order 1.5

(CR-SCKF (IT-1.5))

To initialize the Bayesian filters, the initial state density was assumed to be Gaussian with the mean x̂0|0

and covariance P0|0:

x̂0|0 = [62km 3100m/s 10−5]T

P0|0 = diag([(1km)2 (100m/s)2 10−4]).

For the purpose of implementing the time-update of the cubature filter, we used the Itô-Taylor expansion

of 4 time-steps between any two consecutive measurement instants.

Performance metric. For this problem, we used the average absolute error as a performance measure.
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The average absolute error in the i-th state component at time k is defined by

εk[i] =
1

N

N∑
n=1

|x(n)
k [i]− x̂

(n)
k|k[i]|,

where N is the total number of Monte Carlo simulation runs. Each trajectory was simulated for 30s; and

a total of N = 50 independent Monte Carlo runs was made.

Observations and Conclusion.

• The average absolute errors in altitude, velocity and ballistic coefficient are shown in Figs. 5(a)-

5(c). As expected, both the SCKF (IT-1.5) and the CR-SCKF (IT-1.5) perform almost equally, and

markedly outperform the EKF and the SCKF (IT-0.5).

• Though the computational costs of all four Bayesian filters grow cubically with the state-vector

dimension, their scaling factors are different. In terms of relative computational time, the EKF takes

the shortest time and the SCKF (IT-1.5) takes the longest time; The CR-SCKF (IT-1.5) and the SCKF

(IT-0.5) take the same time approximately.

To sum up, based on the computational complexity-accuracy tradeoff, we may say that the CR-SCKF

(IT-1.5) is the best choice for this considered tracking problem.

VII. CONCLUDING REMARKS

In this paper, we have developed a square-root cubature Kalman filter (SCKF) for continuous-discrete

stochastic nonlinear systems. In the time-update step of the SCKF, we have employed two different

numerical integration tools:

• In the time domain, we discretize the continuous-time state process using the Itô-Taylor expansion of

order 1.5. This step transforms a continuous-discrete time filtering problem into a familiar discrete-

time filtering problem.

• Subsequently, in the state-space domain, we compute the second-order information of the predictive

density using the third-degree cubature rule that numerically integrates the time-discretized process

equation.

Note that one of the main reasons for why we do not choose an Itô-Taylor expansion of higher order

(higher than 1.5) is that the conditional density of (14) given xk is no longer Gaussian. The higher-order

expansion brings in squared Gaussian terms, which make the subsequent computations of second-order

statistics extremely difficult. To markedly reduce the computational cost of the SCKF, we have also derived
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a cost-reduced SCKF. We have demonstrated that the SCKF and its cost reduced variant perform equally

well and outperform the existing solutions in tracking a ballistic target on reentry.
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Fig. 5. Comparison of Bayesian filters’ performances averaged over 50 runs (solid line with circles- EKF, dotted line with squares- SCKF
(IT-0.5), solid line- SCKF (IT-1.5), dotted line- CR-SCKF (IT-1.5))
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APPENDIX A

COMPUTATIONAL COST OF THE CR-SCKF

Below, we summarize the number of flops required by each step of the time and measurement updates

of the CR-SCKF algorithm:



29

Time Update

Steps add/substract multiply/divide square

root

1. Xi,k|k = Sk|kξi + x̂k|k (i = 1, . . . 2n) n3 + n2 n3 + n2 −
2. x̂k+1|k = 1

2n

∑2n
i=1 X∗

i,k+1|k 2n2 − n n −
3. X ∗

k+1|k = 1√
2n

[X∗
1,k+1|k − . . .− x̂k+1|k] 2n2 2n2 −

4. Sk+1|k = Tria([X ∗
k+1|k . . .]) 3n3 − 1

2
n2 − 1

2
n 3n3 + 3n2 n

Total cost 8n3 + 21
2
n2 + 1

2
n

Measurement Update

Steps add/substract multiply/divide square

root

1. Xi,k|k = Sk|kξi + x̂k|k (i = 1, . . . 2n) n3 + n2 n3 + n2 −
2. ẑk+1|k = 1

2n

∑2n
i=1 Zi,k+1|k (2n− 1)m − −

3. Xk+1|k = 1√
2n

[X1,k+1|k − . . .− x̂k+1|k] 2n2 2n2 −
Zk+1|k = 1√

2n
[Z1,k+1|k − . . .− ẑk+1|k] 2nm 2nm −

4. Tria


 Zk+1|k SR,k+1

Xk+1|k O


 2n3 + (5m− 1

2
)n2 2n3 + (5m + 2)n2 n + m

+(4m2 −m− 1
2
)n +(4m2 + 3m)n

+m3 − 1
2
m2 − 1

2
m +m3 + m2

5. Wk+1 = B/A 1
2
m(m− 1)n + 1

6
m3 1

2
m(m + 1)n + 1

6
m3 m

−1
2
m2 + 1

3
m +1

2
m2 − 2

3
m

6. x̂k+1|k+1 = x̂k+1|k + Wk+1 . . . m(n + 1) nm −
Total cost 6n3 + (10m + 15

2
)n2 + (9m2 + 10m + 1

2
)n

+7
3
m3 + 1

2
m2 + 7

6
m


