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Abstract— We present a novel wideband Multiple-Input, Multiple-Output (MIMO) channel model, which we refer to as the 

structured model. The structured model is based on the Eigenvalue Decomposition (EVD) of the wideband channel correlation matrix. 

It does not assume the scatterers at the receiver fade independently of those at the transmitter. It also models correlation between 

delay bins in the Power Delay Profile (PDP). With preliminary data gathered using McMaster’s Wideband MIMO Software Defined 

Radio (the WMSDR) in fixed outdoor locations, and Brigham Young University’s (BYU’s) wideband channel sounder in fixed indoor 

locations, we show good agreement between modeled and measured data. The two platforms used and the environments in which the 

data were collected were very different. The proposed model performed equally well with both data sets, demonstrating its robustness.  

 
Index Terms— antenna arrays; channel capacity; channel modeling; measured channel data; multiple-input multiple-output; 

wideband. 

I. INTRODUCTION 
ultiple-Input, Multiple-Output (MIMO) systems offer the promise of increased spectral efficiency by taking 

advantage of multipath diversity [1], [2]. The gain of real MIMO channels over single-input, single-output (SISO) 

channels is highly dependent on the orientation of scatterers in the channel, and the correlations between them. We 

refer to this as the spatial structure of the channel. Thus, in order to better understand the gains associated with 

multipath diversity, we can investigate the spatial structure of the channel [3].  

It has been proposed to characterize the spatial structure of the MIMO channel by modeling the correlation 

between channel coefficients [4]. This class of channel models is called correlative channel modeling. In the past, 

efforts have focused on modeling the correlations in narrowband channels. Recent literature documents an increasing 

move toward gathering channel data in real environments to test various narrowband channel models [5], [6], [7].  

In [8], Yu et al. extend the narrowband Kronecker product model to the wideband case. The Kronecker product 

model assumes that the channel covariance matrix may be approximated as the Kronecker product of the transmit and 
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receive correlation matrices. The transmit and receive correlation matrices, which we collectively term the one-sided 

correlation matrices, together have fewer parameters than the channel covariance matrix. To extend the Kronecker 

model to the wideband case, Yu et al. assume that each delay bin in the Power Delay Profile (PDP) is independent, 

and apply the Kronecker model to each delay bin.  

In order to gain more insight into the spatial structure of the channel, the correlation matrix can be treated using the 

Eigenvalue Decomposition (EVD). Weichselberger [7] develops a narrowband MIMO channel model based on this 

approach. He uses the eigenbases computed from the EVD of the one-sided correlation matrices as parameters in his 

model. He shows that his model predicts the capacity of real channels more accurately than the Kronecker model. 

In the following, we present a novel wideband MIMO channel model, which is an extension of the ideas contained 

in [7]. We refer to this model as the structured model, as it is based on the concept of structured vector modes as 

presented in [9]. The structured model is unique for the following reasons. (1) The structured model is based on the 

EVD of the one-sided correlation matrices. (2) It considers correlation in three dimensions, namely the receive-

transmit-delay space. (3) It accounts for the correlation between delay bins in the Power Delay Profile (PDP). (4) It 

does not assume that the scatterers at the transmitter fade independently from those at the receiver. To the best of our 

knowledge, this is the first wideband MIMO channel model that is based on the EVD of the channel, and is capable 

of modeling the correlation between delay bins. Most importantly, we verify our wideband model using real-life data 

from two different measurement platforms, taken in two different environments. The results show the model to be 

fairly accurate with respect to predicting capacity in both scenarios. It consistently outperforms the extended 

Kronecker model. 

The rest of the paper is organized as follows. In Section II, we briefly cover relevant concepts in tensor calculus. 

We describe the wideband system model in Section III. In Section IV.A, we summarize both the narrowband 

Kronecker model, and its wideband extension. We then present Weichselberger’s narrowband model in Section IV.B. 

To develop the structured model, we extend the concepts of Weichselberger’s model to the wideband case. We 

present the structured model in Section V. In Section VI we discuss the MIMO Azimuth Power Spectrum (APS) and 

show how this tool can be used to visualize the spatial structure of the channel. Using the MIMO APS, we also give 

an example where the Kronecker model fails to represent the spatial structure of the channel, thus motivating our new 

model. In Section VII, we describe the experimental setup for two wideband platforms, McMaster’s Wideband 

MIMO Software Defined Radio (the WMSDR) and Brigham Young University’s (BYU’s) wideband channel 
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sounder. We use data from both platforms to verify the structured model, and present the results in Section VIII. We 

conclude in Section IX. 

II. NOTATION AND RELEVANT TENSOR CALCULUS 
This section introduces notation used throughout the rest of the paper. It also introduces concepts in tensor calculus 

relevant to our wideband system model in Section III, and the structured model in Section V. Recasting the wideband 

MIMO channel gains as a tensor allows us the use of tensor decomposition [10] to derive the structured model. 

A. Notation 
Lower case letters with no indices attached { }a, b, c,…  are scalars. Bold lower case letters { }, , ,a b c …  are vectors. 

Bold upper case letters {  are matrices. Tensors are multidimensional generalizations of matrices. Scalars, 

vectors, and matrices are examples of zeroth, first, and second-order tensors. All higher order tensors are addressed 

using upper case calligraphic letters { . The elements of a tensor of any order can be addressed by one of 

two ways, e.g. the (i1, i2, i3)th  element of  is addressed as either ( )  or  for indices , 

, and . Throughout the paper, we use a calligraphic upper case, e.g. , or indexed lower case 

letter, e.g.  to refer to the same tensor interchangeably. The expression  implies an Nth-order 

tensor. 

}

}
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N

, , ,A B C …

, , ,A B C …

I I I1 2 3× ×∈ CA
i i i1 2 3

A
i i i1 2 3

a 1 1i 1, , I= …

2 2i 1, , I= … 3i 1, , I= … A

i i i1 2 3
a 1 nI I I× × ×∈ CA … …

B. Matrix Unfolding 
There are typically many ways to map the elements of a multidimensional tensor to a matrix. One set of such 

mappings is termed the nth matrix unfolding  of A . Specifically, the matrix unfolding  ( )nA ( )
( )n n 1 N 1 n 1I I I I I

n
+

×∈A C … …
−

N

 of the 

tensor  is formed by stacking the columns formed by the nth dimension, one after the other. The special 

case of a three dimensional tensor is illustrated in 

1 nI I I× × ×∈ CA … …

Fig. 1.  

C. The Vec and Unvec Operators Extended to Tensors 
The vector operator  can be extended to tensors. Traditionally, ( )vec i ( )vec A  is defined as the mapping of all  

to a column vector, such that the columns of A are stacked one on the next. The inverse operation  is the 

reverse mapping of all  to a matrix. In the same way,  is defined as the mapping of all  to a column 

vector. To illustrate this, consider a third-order tensor . We first stack all the elements  for all i1 

ija

( )unvec A

ija ( )vec A
1 Ni ia …

I I I1 2 3× ×∈ CA i i i1 2 3
a



 4

while keeping i2 and i3 fixed. After exhausting all i1, we increment i2, and cycle through all i1, with i2 and i3 fixed. 

The process is repeated until we exhaust all i1, i2, and i3. Symbolically,  

( )
1 1 1 2 1 2111 I 11 121 I 21 131 I I 1 112 I I I

T
vec a a a a a a a a  ⎡ ⎤= ⎣ ⎦A " " " "

3

.  
(1)

The inverse operation, ( )unvec A , implies the reverse mapping. 

D. The N-mode Product 

Consider a tensor  and the matrix . The n-mode product between them is defined as 

, where the elements of the product tensor B  are computed as  

1 nI I I× × ×∈ CA … … N

… …

m

N M… …

, , I= …

2

2

n nx

n nJ I×∈M C

n= × MB A 1 n 1 n n 1 NI I J I I
− +

× × × × × ×∈ C

1 n 1 n n 1 N 1 n N n n

n

i i j i i i i i j i
i

b a
− +

=∑… … … … . (2)

Using the nth unfolding of , the n-mode product can also be expressed as a matrix multiplication,  A

( ) ( )n n=B MA . 

E. Tensor Outer Product 
The outer product of two tensors is the multiplication of all possible combinations of both tensor elements. That is, 

the outer product  of two tensors and B  is , where  A BD 1 nI I I× × ×∈ CA … … 1 nJ J J× × × ×∈ C 1 N 1 MI I J J∈ CC … …

(3)

1 N 1 M 1 N 1 Mi i j j i i j jc a b=… … … …  (4)

for i 1  and . n n m Mj 1, , J= …

F. Tensor Summation Convention 
The tensor summation convention provides a compact way of expressing a linear combination of tensor elements 

[11]. It states that, whenever an index appears twice in an expression, a summation over that index is implied. The 

summation is performed over the entire range of the repeated index.  

As an example, consider the input vector , channel matrix , and output vector . We can 

express the output at each m as the linear combination of input and channel tensor elements, i.e. 

2∈x C 2 2×∈H C 2∈y C

1 11 1 12y h x h x= +  
(5)

2 21 1 22y h x h x= + . 
 
If we define m to be a free index, and n a summation index, we can rewrite the above system of equations as 

2

m m
n 1

y h
=

=∑  (6)
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for  and . Using the summation convention, we can omit the summation symbol, and write m 1, 2= n 1, 2=

m mny h x= n

+ν

. 

III. WIDEBAND SYSTEM MODEL 
The SISO wideband channel is traditionally modeled as a tapped-delay line filter [12]. Consider the symbol-spaced 

discrete-time baseband equivalent model of Fig. 2, where  is the sample time. The input-output relationship for a 

static wideband channel can be expressed as  

sT

(7)

[ ] [ ] ( )[ ] [ ]
D

d 1

y i h d x i d 1 i
=

= − −∑  (8)

where [ ]x i  is the (discrete-time) input,  is the set of channel gains for delay , [ ]h d d 1, , D= … [ ]iν  includes all noise 

effects, and [ ]y i  is the output at instant i. For the MIMO case, the input-output relationship can be written as 

[ ] [ ] ( )[ ] [ ]
D

d 1

i d i d 1
=

= − −∑y H x ν (9)i+  

where [ ]ix  is the  channel input for all transmitters at instant i,  is the  channel gain matrix at 

delay d, 

TxM ×1 [ ]dH Rx TxM M×

[ ]iν  is the  noise vector, and RxM ×1 [ ]iy  is the  receive vector. RxM ×1

)

We wish to recast the wideband MIMO model using tensors. This will allow us to use multilinear algebra to 

analyze the wideband channel. We note that the sequence , for all delays, can be considered as a three-

dimensional quantity, and is thus more easily expressed as a third-order tensor. We define the wideband H-tensor, 

 to be a tensor whose element  is the complex gain of the channel between receiver m, transmitter n 

at delay d, for , , and d 1 . In this way,  consists of the subset of elements of  

corresponding to delay tap d, i.e. 

[ ]dH

Rx TxM M D× ×∈ CH mndh

Rxm 1 M= … Txn 1 M= … D= … [ ]dH H

[ ]
Tx

Rx Rx Tx

11d 1M d

M 1d M M d

h h

d

h h

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

H

…

� # % #

"

 (10)

  Note that, when D , the H-tensor reduces to the familiar narrowband H-matrix .  1= Rx TxM M×∈H C

Similarly, the channel input  is a two-dimensional quantity. Thus, we can map the elements of the channel 

input vector  for  to the matrix element , for example,   

[ ]dx

[ ]dx (d 0, 1, , D 1= − − −… ndx
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[ ]
Tx

T

1d 2d M dd x x x= ⎡ ⎤⎣ ⎦x " . Using tensor calculus, we recast (9) as  

(11)
m mnd nd my h x= +ν

H . 

, 

where  is the noise vector, and  is the channel input. Note that we only consider the output for a 

single time instant.  

RxM 1×∈ν C RxM 1×∈y C

IV. NARROWBAND CORRELATIVE MIMO CHANNEL MODELS 
Narrowband correlative models capture the spatial characteristics of a MIMO channel by modeling the correlation 

between each SISO channel. The full correlation matrix   is defined as Rx Tx Rx TxM M M M

H

×∈R C

(12)( ) ( ){ }H

H E vec vecR H�

In practice, H is computed from real channel measurements, and the expectation is approximated by the average over 

a finite number of H-matrices. We can generate an ensemble of synthetic Gaussian IID H-matrices using  as  HR

( )1
2

synth Hunvec=H R (13)g , 

where  is a vector with complex Gaussian elements, and Rx TxM M 1×∈g C
1

2

HR  is the matrix square-root of . Because 

 maintains the spatial correlation of H, we say that its spatial characteristics are the same as those of the real 

channel. The goal of correlative channel modeling is to reduce the number of parameters needed to generate an 

ensemble of exemplar H-matrices, while maintaining the spatial characteristics of the measured channel. 

HR

synthH

A.   The Kronecker Model and Wideband Extension 
In this section, we summarize the narrowband Kronecker model, and the extension to the wideband channel, that is 

presented in [8]. The Kronecker model assumes that the scatterers around the receiver are not correlated with those 

around the transmitter. The parameters of the model are the one-sided correlation matrices  and . The one-

sided correlation matrices can be computed from the H-matrix as  

RxR TxR

{ }H

Rx

1
E=

β
R HH , { }TH

Tx

1
E=

α
R H H (14), 

where ( )  is the Hermitian transpose, and ( )  is the ordinary transpose. In practice, the expectation is approximated 

by averaging over a finite number of measured channel matrices. Each correlation matrix is normalized to the 

average power of all channels, 

Hi Ti

(15)
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( ) { }2

FHTr Eαβ = =R H  

where ( )Tr i  is the trace operator, and 
F
i  is the Frobenius norm. The Kronecker model reduces the number of 

parameters used to describe RH  from ( )  to  by approximating it as the Kronecker product of the 

one-sided correlation matrices, that is,  

2

Rx TxM M 2

Rx TxM M+ 2

R (16)
H,Kron Tx Rx= ⊗R R  

where  denotes the Kronecker product. We can generate an ensemble of H-matrices by spatially filtering a 

complex Gaussian matrix, that is 

⊗

(17)( )1 1
2 2

T

Kron Rx Tx=H R G R  

where G is a spatially white matrix with complex Gaussian entries. Note that, for the case when there is no 

correlation at the transmitter nor the receiver, 
1 1

2 2

Rx Tx= =R R I , and the Kronecker model reduces to the Gaussian IID 

channel, i.e. . Gauss =H G

Yu et al. [8] extend the narrowband model by applying (17) to each delay tap in the PDP by assuming the channel 

at each delay tap is independent of all others. The resulting model is thus 

(18)[ ] [ ] [ ] [ ]( )1 1
2 2

T

Kron Rx Txd d d=H R G R d  

where [ ]
1

2

Rx dR  and [ ]
1

2

Tx dR  are computed using the measured  for d 1 . In order to compare the result to 

the structured model, we map the elements of  to a third-order tensor H . The performance of 

the Kronecker model for real channels is discussed further in Section 

[ ]dH , , D= …

[ ]Kron dH Rx TxM M D

Kron

× ×∈ C

VI.B.  

B. The Weichselberger Model 
In this section, we provide a brief summary of the Weichselberger narrowband channel model [7]. Concepts from 

the Weichselberger model will be used in the derivation of the structured model.  

Unlike the Kronecker model, the Weichselberger model does not assume the scatterers at the receiver are 

independent of those at the transmitter, making it more realistic than the Kronecker model. The parameters of the 

Weichselberger model are the receive and transmit eigenbases URx, UTx, and the coupling matrix Ω. The coupling 

matrix describes the average energy of the SISO channel between the mth receive and nth transmit eigenmodes. The 

receive and transmit eigenbases are found by taking the EVD of the one-sided correlation matrices, 

(19)
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H

Rx Rx Rx Rx=R U Λ U , . H

Tx Tx Tx Tx=R U Λ U

In order to compute the coupling matrix Ω, we define an auxiliary matrix K as 

(20)
H H

Rx Tx=K U HU . 
We can then compute the coupling matrix as 

(21){ }*E=Ω K K:  

where is the Hadamard (element-wise) product, and ( )  is the element-wise complex conjugate. The structure of 

Ω can be directly related to the orientation of the scatterers in the channel between the transmitter and receiver [

: *
⋅

7], 

[9].  

The above parameters lead us to the Weichselberger model synthesis equation,  

(22)( ) T

Weich Rx Tx=H U Ω G U� :  

where  is the element-wise square root of Ω, and G is a spatially white matrix with complex Gaussian entries. 

Implicit in (22) is the assumption that the channel coefficients are Rayleigh distributed. The Weichselberger model 

reduces to the Kronecker model if and only if the coupling matrix reduces to the outer product of the transmit and 

receive eigenvalues, that is, if  

Ω�

T

Rx ,1 Tx ,1

Rx ,2 Tx ,2

Rx

Rx ,M Tx ,MRx Tx

1

P
=

⎛ ⎞⎛⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝

Ω
# #

λ λ

λ λ

λ λ

⎞

⎠

 (23)

where , λ  are the eigenvalues of R , , and Rx ,iλ Rx , j Rx TxR ( )Rx RxP trace= R .  

Using measured data from many different scenarios, Weichselberger has shown that his model agrees closely with 

measured data [9]. The main disadvantages of the Weichselberger model compared to the Kronecker model are the 

increased number of parameters needed to synthesize an exemplar H-matrix, and the increased complexity in 

obtaining those parameters from the measured data. The number of parameters needed for the Weichselberger model 

is , whereas the number required for the Kronecker model is . The 

increased complexity is the price we have to pay for a more realistic model when opting for the Weichselberger 

model. 

2 2
Rx Tx Rx Rx Tx TxM M M M M M+ +− − 2

Rx TxM M+ 2

V. A NOVEL WIDEBAND MIMO CHANNEL MODEL 
In this section, we present a novel wideband MIMO channel model, which we call the structured model. The 
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structured model is an extension of the Weichselberger model to three dimensions. Using tensor calculus, we define 

tensor correlation and decomposition in three dimensions, which leads us to the structured model. 

A. The Wideband Correlation Matrix 
We define the sixth-order wideband correlation tensor as 

{ }*E=R� H HD  (24)

where the tensor outer product A  was defined in Section BD II.E. The elements of the wideband correlation tensor 

are defined as  

(25){ }*

mndpqr mnd pqrr E h h�  
for Rxp 1, , M= … , , and r 1 . Here we define the conjugate of all elements in  to be Txq 1, , M= … , , D= … H

( )* *

mndmnd
hH � . 

In order to make this definition more clear and to relate the result to established engineering conventions, we 

define the wideband correlation matrix as the expected value of the outer product of the vectorized H-tensor. The 

 wideband correlation matrix is computed as Rx Tx Rx TxM M D M M D×

( ) ( ){ }H

WB,H E vec vec=R H H . (26)

Note that  is one mapping of the elements of the wideband correlation tensor R  to a matrix. This particular 

mapping has some nice properties related to real wideband channels. We can recast R  as 

WB,HR

WB,H

[ ]( ) [ ]( ){ } [ ]( ) [ ]( ){ }

[ ]( ) [ ]( ){ } [ ]( ) [ ]( ){ }

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

Rx Tx Rx TxM M M M

H H

WB,H

H H

WB,H 1 H 1 WB,H 1 H D

WB,H D H 1 WB,H D H D

E vec 1 vec 1 E vec 1 vec D

E vec D vec 1 E vec D vec D

×⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

H H H H

R

H H H H

R R

R R


����������
…

# % #

"

…

# % #
"

 

(27)

where  for .  is Hermitian symmetric. This means that the 

diagonal blocks of  are also Hermitian symmetric, but the off-diagonal blocks are only symmetric to their 

counterparts across the diagonal, i.e.,  ]  and ]  for .  

[ ] [ ] [ ]( ) [ ]( ){ }H

WB,H d H r E vec d vec rR H� H

H

WB,H d H d WB,H d H d=R R H

WB,H d H r WB,H r H d=R R

r 1, , D= … WB,HR

WB,HR

[ ] [ ] [ ] [ [ ] [ ] [ ] [ r d≠

For practical channels,  tends to be close to being block diagonal, with the majority of the energy along the WB,HR
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diagonal blocks . To visualize why this may be so, consider the oval of scatterers model conventionally 

used to visualize the wideband channel, as shown in 

[ ] [ ]WB,H d H dR

Fig. 3 [12]. Each delay tap in the PDP represents the sum of 

energy from all scatterers in a given annulus. For most practical channels, the scatterers in adjacent ovals are far 

enough away from each other that they are only weakly correlated. In this case, the cross-correlation blocks  

for  tend to have small elements. However, as we increase the system bandwidth, the ovals get proportionally 

smaller as we gain spatial resolution. At some point, it can be expected that the cross correlation blocks will be 

significant contributors to the wideband correlation matrix. The proposed structure for  covers both extremes, 

and allows us to visualize the correlation between scatterers at different delays. 

[ ] [ ]WB,H d H rR

r d≠

WB,HR

B. H-Tensor Synthesis Using the Wideband Correlation Matrix 
We define  to be the synthetic H-tensor generated using , i.e. synthH WB,HR

(28)( )1
2

synth WB,Hunvec= R g
�
H  

where  is a vector whose elements are chosen independently from a complex Gaussian distribution, and Rx TxM M D 1×∈g C

1
2

WB,HR  is the matrix square root of .  WB,HR

C. One-Sided Correlation in Three Dimensions 
In order to reveal more about the structure of the channel and to develop the structured model, we extend the 

concept of one-sided correlation to three dimensions. We define the receive correlation matrix  to be  Rx RxM M

Rx

×∈R R

(29)
( ) ( ){ }H

Rx 1 1E=R H H  

where  is the 1st matrix unfolding of . Similarly, we define the transmit and delay correlation matrices 

 and  to be  

( )1H H

Tx TxM M

Tx

×∈R R D D

Del

×∈R R

(30)
( ) ( ){ }H

Tx 2 2E=R H H , . ( ) ( ){ }H

Del 3 3E=R H H

We can apply the EVD to each one-sided correlation matrix to obtain an eigenbasis for the receive, transmit, and 

delay space. 

Limitx
H

X X,i X ,i X ,i
i 1

H

X X X

=

=

=

∑R u

U Λ U

λ u
 (31)
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where , and  respectively. { }X Rx, Tx, Del∈ XLimit ∈ { Rx TxM , M , D}

D. Wideband Coupling Coefficients 
We define the wideband coupling coefficient as the average power coupled between three given eigenvectors. 

Thus, we define the ijkth wideband coupling coefficient as  ijkω

( ) ( )H

ijk Del ,k Tx , j Rx ,i WB,H Del ,k Tx , j Rx ,i= ⊗ ⊗ ⊗ ⊗u u u R u u uω  (32)

where  is the mth element of the ith receive eigenvector,  is the nth element of the jth transmit eigenvector, 

and  is the dth element of the kth delay eigenvector, for , , and . 

Rx ,miu Tx ,nju

Del,dku Rxi 1, , M= … Txj 1, , M= … k 1, , D= …

E. The Structured Model Synthesis Equation 

Let  be a tensor whose elements are computed as Rx TxM M D× ×∈ CW mnd mnd mndw g= ω , where  are chosen 

independently from a complex Gaussian distribution, and  is the wideband coupling coefficient. After some 

manipulation, we can show that the synthesis equation for the structured model is  

mndg

mndω

struct 1 Rx 2 Tx 3 Del= × × ×U U UH W . (33)

The structured model enables us to compute an ensemble of H-tensors with approximately the same spatial 

characteristics as the measured channel.  

VI. THE MIMO APS AND KRONECKER MODEL DEFICIENCIES 
As previously mentioned, the purpose of correlative channel models is to approximate the spatial structure of the 

channel. A useful tool to visualize the spatial structure is the Double Directional Azimuth Power Spectrum, which we 

will refer to as the MIMO APS. The MIMO APS allows us to visualize the location and magnitude of scatter clusters 

in the channel with respect to the receiver and transmitter azimuth. Each resolvable cluster represents a path from the 

transmitter to the receiver. The properties of a MIMO channel are largely determined by the spatial structure of the 

channel; the number and orientation of the scatterers determines the degree of spatial diversity and the multiplexing 

gain of the channel. Using the MIMO APS, we can qualitatively evaluate a given model’s ability to approximate the 

spatial structure of the channel. We begin this section with a brief introduction to the MIMO APS. Using the MIMO 

APS, we then discuss instances where the Kronecker model does not accurately represent the spatial structure of the 

channel. In Section VIII.D, we also compare the Kronecker and structured model’s ability to approximate the spatial 

structure of real channels by comparing their Azimuth Power Spectra (APSs).  
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A. The MIMO APS 
  The MIMO APS can be computed using the Bartlett beamformer, which is defined as [9] 

( ) ( ) ( )[ ] ( ) ( )[ ]H

Bart Rx Tx Tx Tx Rx Rx H Tx Tx Rx RxP ,φ φ = φ ⊗ φ φ ⊗ φa a R a a . (34)

where ( )Bart Rx TxP ,φ φ  is the array factor,  is the narrowband correlation matrix,  and  are the receive and 

transmit azimuth angles, and 

HR Rxφ Txφ

( )Rx Rxφa  and  are the  receive and  transmit steering vectors 

respectively. For the case where both the receiver and transmitter are equipped with Uniform Linear Arrays (ULAs), 

the steering vectors are equal to the Fourier vector 

(Tx Txφa ) 1 1RxM × TxM ×

( ) ( )
X

X

M
j i 1 sin

X X
i 1

e− − κδ⋅ φ

=

φ =∑a  (35)

where , { }Rx TxX M , M∈ 2κ = π λ  is the wave number, and  is the antenna spacing. In this case, the Bartlett 

beamformer becomes the two-dimensional Fourier transform of the correlation matrix. This means that the spatial 

structure of the channel is entirely characterized by the correlation matrix alone.  

δ

B. Kronecker Model Deficiencies 
Detailed analysis of the Kronecker model using real data has shown that it performs poorly in some situations. The 

accuracy of the Kronecker model decreases as we increase the number of antennas (MRx, MTx > 3) [9], [13]. Özcelik 

et al. [14] provide a detailed analysis of the joint Direction of Arrival (DoA) versus Direction of Departure (DoD) 

Fourier spectra from real channel measurements. It was shown that, in typical Non-Line-of-Sight (NLoS) channels, 

the DoD spectra are typically not independent of the DoA spectra. This implies that the scatterers at either end of the 

link are, in fact, correlated. The Kronecker model forces independence of the two spectra, which produces artifact 

paths at the vertical and horizontal intersections of real paths, which are not present in the real channel. The artifact 

paths increase the apparent diversity, but decrease the apparent capacity. The strength of any given artifact path 

depends on the number and strength of the real paths intersecting at that point. Because the overall power in the 

channel is kept constant through normalization, this has the effect of taking power away from real paths in the 

channel if they do not lie at the intersection of other paths. The end result is that the Kronecker model consistently 

underestimates capacity. Despite the evidence that suggests the Kronecker model to be inaccurate, it is by far the 

most popular MIMO channel model, mainly due to its simplicity and analytical tractability.  

The effects of the separability assumption are best illustrated by way of an exemplar MIMO APS.  Consider the case 

where we wish to approximate the spatial structure of a synthetic channel using the Kronecker model. Fig. 4 
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illustrates the examplar MIMO APS, using an  system equipped with ULAs, whose antenna elements are 

separated by 

8 8×

2δ = λ . The channel consists of four equally-weighted correlated scatterers located at 

( )Rx Tx,φ φ = o o(60 , 40 ) , , , .  o o(0 , 50 )− o o( 50 , 60 )− o o(0 , 0 )

In order to test the Kronecker model, we generate an ensemble of H-matrices using (13). We then compute the one-

sided correlation matrices , and  using (14). Finally, we compute the full correlation matrix  using (16), 

and use it to compute the MIMO APS. The Kronecker APS is plotted in 

RxR TxR H ,KronR

Fig. 4(b). The Kronecker APS includes the 

four real paths, labeled A-D, and 8 artifact paths, labeled 1-8. Each artifact path occurs at the intersection of real 

paths. Artifact paths 4 and 5 are particularly strong, since they are both products of three real paths. Note also that the 

magnitudes of real paths C and D are greatly diminished as they do not lie at the intersection points of any other real 

paths. By extension, increasing the number of resolved scatterers will increase the number of artifact paths, and tends 

to diminish energy in paths which depart/arrive farther from the array boresight. This means that the Kronecker 

model performance degrades as we increase spatial resolution. We can increase spatial resolution, for example, by 

increasing the number of antennas and/or antenna directivity. 

This analysis begs the question “how often does this happen in real channels?”  We discuss this further in Section 

VIII.D using MIMO APSs computed from real data, and compare the results to those of the Kronecker and structured 

models.  

VII. EXPERIMENTAL SETUP 
In the following, we briefly describe the specifications and experimental setup for both the WMSDR and the BYU 

wideband MIMO channel sounder. We use data gathered with both platforms to verify the structured channel model. 

We used the WMSDR to gather data in a fixed point-to-point outdoor environment. Measurements were taken at 15 

locations. The BYU data were recorded using a much higher bandwidth than the WMSDR. The BYU data were 

gathered over eight fixed point-to-point locations indoors.  

A. WMSDR Specifications and Experimental Setup 
The WMSDR is a PC-based, highly versatile  wideband MIMO software defined radio. It consists of a 

separately mobile transmitter and receiver set.  

4 4×

1) Transmitter Set 
We refer to all equipment at the transmit side collectively as the transmitter set. We present a block diagram of the 

transmitter set in Fig. 5. It consists of the WMSDR Transmitter, the transmitter PC, and external RF power amplifiers 



 14

and antennas. Fig. 6 shows a picture of the complete transmitter set. 

We generate an arbitrary complex baseband signal at the transmitter PC. The signal is fed directly to the WMSDR 

Transmitter. The WMSDR Transmitter houses four independent transmit chains which broadcast simultaneously. We 

can control each chain individually. The WMSDR Transmitter is also equipped with a Global Positioning System 

(GPS) time/frequency/position reference. This synchronizes the Local Oscillator (LO) and sample timing clocks to 

their counterparts in the WMSDR Receiver so that we can recover the sample time and phase during post processing. 

The entire transmitter set is housed in a mobile rack mount, along with RF power amplifiers, a battery back-up 

Uninterruptible Power Supply (UPS) and antenna array. These allow us to move the transmitter independent of the 

receiver outdoors, and without the use of a power outlet for a short period of time. 

For the data considered below, we configured the WMSDR Transmitter to continuously transmit four independent 

maximal length sequences (m-sequences) of 4096 chips at 4Mchips/s using a BPSK constellation. We used a 

rectangular array of vertically polarized slot antennas with 70o 3dB beam width, and 4dBi gain at bore sight. Both 

transmitter and receiver work at a center frequency of 2135MHz. The antennas are separated by  vertically, and 

 horizontally, where  is the wavelength at the center frequency. Two power amplifiers generate approximately 

16dBm in-band power per antenna.  

2λ

1.3λ λ

2) Receiver Set 
We refer to all equipment at the receive side collectively as the receiver set. We present a block diagram of the 

receiver set in Fig. 7. The receiver set consists of the WMSDR Receiver, the receiver PC, and external Low Noise 

Amplifiers (LNAs) and antennas. The WMSDR Receiver houses four separate RF chains, agile LO, GPS 

time/frequency reference, and a microcontroller board to monitor the Automatic Gain Control (AGC) at the receiver 

front-end. The AGC allows a much greater dynamic range, which, in turn, allows for a greater variance in the 

received signal strength. Because the measurements were done in a static point-to-point environment, the AGC 

adjusted to one gain for each location and remained fixed for the duration of the measurement at that location. The 

WMSDR Receiver converts all four RF chains to digital complex baseband information simultaneously. The 

complex baseband information is recorded directly to disk at the receiver PC. As with the transmitter, all the above 

equipment is installed in a mobile rack mount. A picture of the receiver set is shown in Fig. 8.  

For the data considered below, the receiver was equipped with a linear monopole array with 1.7  separation. To 

compute the MIMO PDP, we use a cross-correlation algorithm on the recorded data to find the beginning of each m-

λ
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sequence. We then recover the sample timing and phase information. Once this is complete, we use matched filtering 

[15], extended to the MIMO case, to obtain the calibrated PDPs. 

3) Measurement Description 
For the measurements in Section VIII, we recorded samples at 8MSamples/s, for approximately 8ms continuous 

recording time per snapshot. At each receiver location, 5 snapshots were taken with about 100ms between snapshots. 

This means that, for each location, we recorded 35 H-matrices over approximately 440ms. The distance between the 

transmitter and receiver ranged from approximately 10m to 100m. A grand total of 525 H-matrices were recorded 

over 15 locations. All locations were in an open parking lot at the McMaster University campus, with trees, cars, and 

buildings comprising the majority of the scatterers within 300m.  

The test environment and equipment setup here were chosen specifically to test one extreme of the wideband 

MIMO channel. The relatively short propagation distance in a sparse scattering environment (a parking lot) 

combined with a directive antenna array at the transmitter, meant that the measured channel contained relatively few 

scatterers. In addition, the AGC at the receiver forced it to focus on the Line-of-Sight (LoS) path, and the 

contributions of most scatterers fell below the noise floor. This in turn meant that the measured channel offered 

relatively low diversity. Using data collected from this environment tests the structured models ability to approximate 

the spatial structure of low-diversity channels. 

B. BYU Wideband Channel Sounder Specifications and Experimental Setup 
The wideband MIMO channel sounder at BYU is based on an 8x8 switched antenna architecture, and is described 

in more detail in [16]. The following briefly describes the theory of operation and setup for BYU channel sounder for 

the data considered in Section VIII. 

1) Transmitter Set 
The BYU wideband transmitter functional diagram is shown in Fig. 9. The transmitter consists of a vector signal 

generator, rubidium clock source, an electronic 1:8 RF switch, a custom timing and synchronization (SYNC) unit, 

and associated antennas and amplifiers. 

The vector signal generator was setup to generate 80 discrete tones at 1MHz spacing, for a total sounder bandwidth 

of 80MHz. The output of the signal generator is connected to an electronic 1:8 RF switch, which distributes the RF 

signal to one of the eight antennas. The transmitter was set to generate 23dBm/antenna. 

The RF switch position is determined by the SYNC unit. There is an identical SYNC unit at both transmitter and 

receiver, which are, in turn, synchronized to a rubidium reference. Before each data run, both SYNC units are 
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synchronized to each other to minimize timing drift over the course of the measurement. Both RF sources are locked 

to a rubidium source, which minimizes relative frequency drift. The SYNC unit at the transmitter was programmed to 

excite each antenna for . This means that, to scan the entire transmit array, we needed about . The SYNC 

unit at the transmitter also ensures that the signal source sequence starts at the proper time instant.  

50 sμ 400 sμ

2) Receiver Set 
The receiver functional diagram is shown in Fig. 10. It consists of an electronic 8:1 RF switch, a PC equipped with 

a data acquisition card, SYNC unit, a rubidium clock source, and all associated RF hardware including amplifiers, 

antennas, Local Oscillator (LO), RF mixer, and bandpass filter. 

The output of the RF switch is amplified by 40dB, mixed down to an Intermediate Frequency (IF), and fed to one 

channel of the data acquisition card (DAQ). The DAQ samples the signal at 500MSamples/s. The 10MHz signal 

from the Rubidium source is also sampled to enable phase coherence with the transmitter during post processing. 

Each receive antenna is sampled for , the full cycle time of the transmitter. This means that it takes 3.2ms to 

measure a complete MIMO channel response. Because of hardware limitations, there is a gap between each complete 

channel response measurement. For the data below, the receiver was programmed to measure a complete response 

every 25.6ms, and recorded data for up to 15s. 

400 sμ

3) Measurement Description 
The channel data were recorded at a center frequency of 2.55GHz and 5.2GHz. Both transmitter and receiver 

employed a circular array of vertically polarized monopoles set to approximately 2λ  spacing for each center 

frequency. Both the transmitter and receiver were located inside a building in separate rooms. The transmitter was 

fixed to one of two positions, and the receiver was moved to one of eight different locations. All measurements were 

done in a fixed point-to-point environment with no line of sight. 

Compared with the WMSDR measurement setup described in Section VII.A, the BYU data was collected in a 

much more scatter-rich environment. Omni-directional antennas at both link ends ensure scatterers in the entire 

azimuth plane are equally well illuminated. The indoor environment provides numerous scatterers in the form of 

walls, floors, furniture, etc. In addition, the NLoS environment ensures that the receiver focuses on weaker reflected 

paths, which in turn increases diversity. The diversity present in the channel can be seen in the MIMO APSs 

presented in Section VIII.D, which shows many peaks over all AoA and AoD azimuths. The increased bandwidth 

versus the WMSDR also means that we have much better scatterer resolution. For example, for the WMSDR, the 
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2MHz effective bandwidth means that all energy within 500ns is grouped into one delay bin. Referring to Fig. 3, this 

means that each annulus is approximately 150m bigger than the last. On the other hand, the BYU sounder’s 80MHz 

bandwidth translates to an approximate scatter resolution of 3.75m. This data set was chosen specifically to test the 

structured model’s ability to model scatter-rich environments. 

VIII. EXPERIMENTAL RESULTS 

A. Methodology 
Using the PDPs computed from all data sets, we compute , and use (28) to generate a synthetic H-tensor. We 

consider this to be our basis for comparison. Using the measured PDPs, we compute the one-sided correlation 

matrices , , and  . We then use eigendecomposition to compute the eigenbases , , and  . Using 

(32) we compute the wideband coupling coefficients  for , , and . We then 

use (33) to generate an ensemble of structured H-tensors .  

WB,HR

RxR TxR DR RxU TxU DU

ijkω Rxi 1, , M= … Txj 1, , M= … k 1, , D= …

structH

For comparison, we also generate an ensemble of H-tensors using the extended Kronecker model [8]. First, using 

the measured PDPs, we compute the one-sided correlation matrices , and  at each delay tap. We use the 

Kronecker model to compute the narrowband H-matrix for each delay bin.  

Rx ,dR Tx ,dR

The capacity was computed using the formula [17] 

[ ] [ ]
Rx

F
H

X 2 M X X
f 1 Tx

1
C log det f f

W M=

= + fΔ
⎡ ⎛ ⎞⎟⎜ ⎤
⎢ ⎥⎟⎜ ⎟⎟⎜⎢ ⎥⎝ ⎠⎣ ⎦

∑ I H H� �ρ
 (36)

where  is in bps/Hz, W=2 (80) MHz with WMSDR (BYU) data, F is the number of frequency bins, ρ  is the 

system SNR, chosen to be 20dB, and 

XC

f W FΔ = . The system SNR is chosen such that the measurement SNR is 

guaranteed to be greater than the system SNR for all measurements. After converting H , , and  to the 

frequency domain, we map the result to , where . We also normalize  using the 

normalization constant  

synth kronH structH

}[ ]X fH� {X synth, kron, struct∈ [ ]X fH�

Rx TxM M F
2

X X
i 1 j 1 k 1Rx Tx

1
n h

M M F = = =

= ∑∑∑ � (37)
,ijk  

where  is the ijkth element of . X ,ijkh� [ ]X fH�
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B. Results: WMSDR Data Set 
Table 1 summarizes the capacity results for the case when ( )  averaging over an ensemble of 

10,000 iterations. The number of parameters needed to compute H  ,H  and  are listed in Table 2. 

(Rx TxM , M , D 4, 4, 4= )

synth Kron structH Fig. 11 

shows the modeled versus measured capacity for the WMSDR data, using the structured model and the extended 

Kronecker model. The diagonal represents the case of no model error. Model error is defined as  

X synth

synth

C C
% Error 100

C

−
= ×  (38)

where . { }X Kron, struct∈

In general, the structured model performed very well, especially when compared to the extended Kronecker model. 

For all locations, the average structured model error is 4.4%, while the average model error for the extended 

Kronecker model is 33.9%. In Fig. 11 we see the Kronecker model consistently underestimates the capacity of the 

channel. These results are in line with those given by Yu et al. [8].  

C. Results: BYU Data Set 
The BYU data are divided into two larger data sets, one recorded at 2.55GHz (Data 255), and the second at 

5.2GHz (Data 52). Each set contains data gathered at 8 different locations. Tables 3 and 4 list the results for the 

average capacity error over all locations for Data 255 and Data 52 respectively. For each data set, we consider the 

cases when , and D 4 . Rx TxM M 4, 6,  and 8= = , 7,  and 10= Fig. 12 shows modeled versus measured capacity graph 

for all locations, all data sets, and all cases listed above. Fig. 13 shows the Cumulative Distribution Function (CDF) 

for all locations, all data sets, and all cases. As mentioned in Section IV.A, increasing ,  increases the 

average Kronecker model error. The structured model error however remains relatively constant as we increase the 

array size.  

RxM TxM

Table 5 shows the average model error broken down for the cases when  4, 6, and 8. As with the 

WMSDR data, our model performed quite well overall. The total average error, averaging over all data sets and all 

cases mentioned above, was 46.1% for the extended Kronecker model, and 4.1% for the structured model. The 

structured model error for the BYU data is close to that of the WMSDR data, which was 4.4%. 

Rx TxM M= =

WB,H Hd dR

D. Results: MIMO APS 
Using  ,H  and  computed from the BYU data, we compute the correlation matrices ] , H Kron structH [ ] [
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[ ] [ ]WB,H H ,Krond dR ,  and  for each delay d. We then compute the MIMO APS for each correlation matrix at 

each delay. This provides a qualitative indication of how well the Kronecker and structured models represent the true 

spatial structure of the channel. 

[ ] [ ]WB,H H ,structd dR

Fig. 14 illustrates the MIMO APS for all three correlation matrices at location 1, set 

1b, for the first delay. The true MIMO APS, shown in Fig. 14(a), contains many distinct resolvable paths, indicating 

a scatter-rich environment. Following the discussion in Section VI, the Kronecker APS, shown in Fig. 14(b) 

emphasizes the paths closest to the AoA = AoD =  axes, while de-emphasizing all other paths. This creates a 

noticeable cross pattern. The structured model, used to produce the APS shown in 

o0

Fig. 14(c), does a much better job 

of representing the center of most major paths, regardless of their azimuth location. 

In general, for most locations, the structured model APS followed much more closely to the true MIMO APS than 

did the Kronecker APS. The Kronecker model faired worse in channels where strong scatterers were located away 

from the AoA-AoD axes, or had many diagonally-aligned peaks.  With respect to the BYU data, this was usually the 

case. Thus, for real environments, the Kronecker model does not represent the spatial structure as well as the 

structured model. 

IX. CONCLUSION  
This paper presented a new wideband MIMO channel model, which we termed the structured model. We first 

introduced the concept of an H-tensor, which characterizes the channel gain of a wideband MIMO channel. We then 

defined the wideband correlation matrix. We extended the concept of one-sided correlation to three dimensions. We 

then presented the structured model, which generates an ensemble of H-tensors using the measured one-sided 

correlation matrices. A distinct advantage of the structured model is that it doesn’t assume independence between 

scatterers at the transmitter and receiver, and it also models the correlation between scatterers at different delays. We 

presented specifications for a new MIMO SDR, dubbed the WMSDR. Using data from the WMSDR, and BYU’s 

wideband channel sounder, we showed that our model performed very well with respect to predicting the capacity of 

the channel. Both data sets used were gathered in two very different environments and using different system 

bandwidths. This proved the robustness of the structured model. We also showed that the structured model performs 

much better than the extended Kronecker model, despite using fewer parameters to generate an ensemble of H-

tensors. Finally, we showed, using MIMO APSs, that the structured model captures the spatial structure of the 

channel better than the Kronecker model. 



 20

ACKNOWLEDGMENT 
The authors wish to express our deepest gratitude to Mike Jensen at Brigham Young University, USA for access to 

BYU data and many fruitful discussions. The authors are also deeply indebted to Tricia Willink at the 

Communications Research Centre, Canada for useful discussions that led to many of the ideas in this paper. The 

authors also owe many thanks to Tim Davidson of McMaster University, Canada for much needed help while 

working on the theory behind the structured model, for many discussions, and for feedback on this paper. The 

authors wish to thank Mathini Sellathurai at Cardiff University, UK for references and feedback on this paper. 

Finally, the authors would also like to thank David Lindo and Debby Mavriyannakis for all their help collecting the 

WMSDR data. 

 



 21

 

TABLES 
TABLE 1: KRONECKER VERSUS STRUCTURED MODEL ERROR 

Loc. 
SynthC  

(bps/
Hz) 

kronC  
(bps/
Hz) 

structC  
(bps/
Hz) 

% 
Error 
Kron 

% 
Error 
Struct 

0901 16.7 9.6 16.3 42.5 2.4 
1100 15.0 10.4 15.3 30.7 2.0 
1215 17.7 11.3 17.4 36.2 1.7 
1354 17.1 8.7 16.9 49.1 1.2 
1750 17.1 12.2 16.5 28.7 3.5 
1844 19.7 11.7 18.7 40.6 5.1 
1931 17.0 10.9 16.0 35.9 5.9 
2021 16.6 10.7 15.9 35.5 4.2 
2116 16.6 11.1 16.6 33.1 0 
2537 14.9 10.8 15.3 27.5 2.7 
2652 11.2 8.8 12.4 21.4 10.7 
2744 12.6 9.8 14.0 22.2 11.1 
2841 15.8 11.6 15.0 26.6 5.1 
3108 13.7 8.7 14.9 36.5 8.8 
3223 15.7 9.0 15.9 42.7 1.3 
   Avg. Error: 33.9 4.4 

 
TABLE 2: PARAMETER COMPARISON 

Model Number Param.( )Rx TxM , M , D  Number  
Param. 
( )4, 4, 4  
4096 

synthH  ( )2

Rx TxM M D  

kronH  ( )2 2

Rx TxD M M+  128 

structH  ( ) ( )2 2

Rx Tx Rx TxM M D M M D+ + + 2  112 

 
TABLE 3: MODEL ERROR FOR DATA 255 

Rx TxM , M , D  % Error  
Kronecker 

% Error  
Structured 

4,4,4 42.6 4.8 
4,4,7 37.1 4.5 
4,4,10 35.5 4.6 
6,6,4 52.3 4.6 
6,6,7 48.6 3.4 
6,6,10 46.9 3.2 
8,8,4 60.1 6.1 
8,8,7 55.1 4.3 
8,8,10 53.8 4.4 

4.4 Average: 47.7 
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TABLE 4: MODEL ERROR FOR DATA 52 

Rx TxM , M , D  % Error  
Kronecker 

% Error  
Structured 

4,4,4 39.8 3.8 
4,4,7 35.5 4.5 
4,4,10 34.7 3.9 
6,6,4 51.1 4.7 
6,6,7 47.1 3.5 
6,6,10 45.1 2.9 
8,8,4 58.2 5.2 
8,8,7 54.2 3.3 
8,8,10 53.0 3.2 

3.7 Average: 44.4 
 

TABLE 5: AVERAGE MODEL ERROR BY ARRAY SIZE 

Rx TxM , M  % Error 
Kronecker 

% Error 
Structured 

4,4 34.6 4.4 
6,6 48.3 3.6 
8,8 55.4 4.3 

4.1 Total Average: 46.1 
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FIGURES 

 
Fig. 1. Illustrating the three different matrix unfoldings for a third-order tensor . A
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Fig. 2. The symbol-spaced discrete time baseband equivalent tapped-delay line model. 
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Fig. 3. Structure of the wideband SISO channel showing the oval of scatterers topology where 1 Wτ =  for system bandwidth W. 
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Fig. 4. Example MIMO APSs. (a) Example using full correlation matrix, 4 distinct scatterers. (b) Kronecker model approximation showing additional artifact 
paths. 
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Fig. 5. The WMSDR transmitter set block diagram showing 1 of 4 chains. 

 
 

(a)

(b)  
Fig. 6. The WMSDR Transmitter (a), and the transmitter set (b). 
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Fig. 7. The WMSDR receiver set block diagram. 
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(a)
(b)  

Fig. 8. The WMSDR Receiver (a), and the receiver set (b). 
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Fig. 9. The BYU wideband transmitter block diagram. 
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Fig. 10. The BYU wideband receiver block diagram. 
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Fig. 11. Modeled versus measured capacity for both Kronecker and Structured models using the WMSDR data. The diagonal line represents no model error. 

 
 

 
Fig. 12. Modeled versus measured capacity for all BYU data sets, all cases, and all locations. 

 
 

 
Fig. 13. Capacity CDF for all data sets, all cases, and all locations. 
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Fig. 14. MIMO APSs computed using BYU data, showing (a) APS from , (b) APS from , and (c) APS from  HR KronR structR

 

REFERENCES 
 
[1]  E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommunications, Vol. 10, No. 6, pp. 585-595, Nov-Dec 1999. 
[2]  G.J. Foschini, M.J. Gans, “On limits of wireless communication in a fading environment when using multiple antennas,” Wireless Personal Commun., vol. 

6, no. 3, pp. 311-335, March. 1998.  
[3]  L. Zheng, D.N.C. Tse, “Diversity and multiplexing; a fundamental tradeoff in multiple antenna channels,” IEEE Trans. Information Theory, vol. 49, no. 5, 

pp. 1073-1096, May 2003. 
[4]  D.-S. Shiu, G.J. Foschini, M.J. Gans, and J.M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. 

Commun., vol. 48, pp. 502-513, Mar 2000. 
[5]  D. Chizhik, J. Ling, P.W. Wolniansky, R.A. Valenzuela, N. Costa, and K. Huber, “Multiple-intput-multiple-output measurements and modeling in 

Manhattan,” IEEE J. on Selected Areas in Commun., vol. 21, pp. 321-331, April 2003.  
[6]  J.W. Wallace, M.A. Jensen, A.L. Swindlehurst, B.D. Jeffs, “Experimental characterization of the MIMO wireless channel: data acquisition and analysis,” 

IEEE Trans. Wireless Commun., vol. 2, no. 2, March 2003. 
[7]  W. Weichselberger, M. Herdin, H. Özcelik, E. Bonek, “A stochastic MIMO channel model with joint correlation of both link ends,” IEEE Trans. Wireless 

Commun., vol. 5, no. 1, January 2006. 
[8]  K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, M. Beach, “Modeling of the wide-band MIMO radio channels based on NLoS indoor 

measurements,” IEEE Trans. Vehicular Tech., vol. 53, no. 3, May 2004. 
[9] Werner Weichselberger, Spatial Structure of Multiple Antenna Radio Channels, Ph.D Dissertation, Technische Universtät Wien, Austria, December 2003. 
[10] L. De Lathauwer, Signal Processing Based on Multilinear Algebra, Ph.D Thesis, Katholieke Universiteit Leuven, Belgium, September 1997.  
[11] J.H. Heinbockel, Introduction to Tensor Calculus and Continuum Mechanics. Avalable: http://www.math.odu.edu/~jhh/part1.PDF, 1996. 
[12] J.G. Proakis, Digital Communications, 3rd Ed., McGraw-Hill, San Francisco, 1995. 
[13] E. Bonek, M. Herdin, W. Weichselberger, H. Özcelik, “MIMO-study propagation first!,” Proc. International Symposium on Signal Processing and 

Information Tech. 2003, 14-17 December 2003 pp. 150-153. 
[14] H. Özcelik, M. Herdin, W. Weicheselberger, J. Wallace, E. Bonek, “Deficiencies of the Kronecker MIMO radio channel model,” IEE Electronics Letters, 

vol. 39, pp. 1209–1210, August 2003. 
[15] P.C. Fannin, A. Molina, S.S. Swords, P.J. Cullen, “Digital signal processing techniques applied to mobile radio channel sounding,” IEE Proc.-F, vol. 138, 

no. 5, October 1991. 
[16]  B.T. Maharaj, L.P. Linde, J.W. Wallace, M.A. Jensen, “A cost-effective wideband MIMO channel sounder and initial co-located 2.4 GHz and 5.2 GHz 

measurements,” Proc. International Conf. on Acoustics, Speech, and Signal Processing 2005, Vol. 3, 18-23 March 2005 pp. 981-984. 
[17]  N. Skentos, A.G. Kanatas, G. Pantos, P. Constantinou, “Capacity results from short range fixed MIMO measurements at 5.2GHz in urban propagation 

environment,” Proc. International Conf. on Commun. 2004, vol. 5, June 2004, pp. 3020 – 3024.  

http://www.math.odu.edu/%7Ejhh/part1.PDF

	I. INTRODUCTION
	II. Notation and Relevant Tensor Calculus
	A. Notation
	B. Matrix Unfolding
	C. The Vec and Unvec Operators Extended to Tensors
	D. The N-mode Product
	E. Tensor Outer Product
	F. Tensor Summation Convention

	III. Wideband System Model
	IV. Narrowband Correlative MIMO Channel Models
	A.   The Kronecker Model and Wideband Extension
	B. The Weichselberger Model

	V. A Novel Wideband MIMO Channel Model
	A. The Wideband Correlation Matrix
	B. H-Tensor Synthesis Using the Wideband Correlation Matrix
	C. One-Sided Correlation in Three Dimensions
	D. Wideband Coupling Coefficients
	E. The Structured Model Synthesis Equation

	VI. The MIMO APS and Kronecker Model Deficiencies
	A. The MIMO APS
	B. Kronecker Model Deficiencies

	VII. Experimental Setup
	A. WMSDR Specifications and Experimental Setup
	1) Transmitter Set
	2) Receiver Set
	3) Measurement Description

	B. BYU Wideband Channel Sounder Specifications and Experimental Setup
	1) Transmitter Set
	2) Receiver Set
	3) Measurement Description


	VIII. Experimental Results
	A. Methodology
	B. Results: WMSDR Data Set
	C. Results: BYU Data Set
	D. Results: MIMO APS

	IX. Conclusion 

