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ABSTRACT

In this paper, we describe a novel algorithm, called Coherent In-
dependent Components Analysis, and referred to as Coherent ICA
for short. The algorithm, rooted in information-theoretic learn-
ing, exploits the combined use of the Infomax and Imax princi-
ples. Experimental results, based on the auditory coding of natural
sounds, are presented that demonstrate the ability of coherent ICA
to extract the envelope of amplitude-modulated sounds in a man-
ner similar to the behaviour of neurons in the cochlear nucleus and
inferior colliculus.

1. INTRODUCTION

Timemanifests itself in many structural and functional specializa-
tions of the auditory system: With multiple time scales in acoustic
stimuli, we find it informative to distinguish two specific compo-
nents in the waveform of an acoustic stimulus [4]:

1. Thecarrier, represented by the fine structure of the wave-
form, which waxes and wanes in an “amplitude-modulated”
fashion.

2. Theenvelope, which is the contour of the amplitude-modulated
waveform.

From a physiological viewpoint, there is therefore interest in am-
plitude modulation, motivated by the desire to know whether en-
velope processing is actually embedded in the auditory system.

Indeed, across multiple layers of the auditory system, there
are neurons that respond differently to an incoming amplitude-
modulated speech signal. In particular, the successive layers of
the auditory system distinguish themselves by responding to dif-
ferent limited ranges of amplitude-modulation rates: The lower
layers are most responsive to fast changes in the energy of incom-
ing acoustic stimuli, with progressively slower changes occurring
in the higher layers.

In light of this reality, it is not surprising that amplitude
modulation is considered to be an important acoustic cue in the
perception of sound, and may therefore play an equally significant
role in the design of a cocktail party processor [3].

With auditory processing as the issue of interest, the first
question that we address in this paper is the following:

Given an additive mixture of amplitude-modulated
speech signals, how can we separate the envelopes
of the individual components, ignoring the asso-
ciated carriers?

Another important question addressed in the paper is:

In a self-organized manner, can we learn the man-
ner in which the different processing layers in the
auditory system respond to an amplitude-modulated
stimulus?

The answers to these basic two questions are to be found in a new
learning principle termed “coherent independent components anal-
ysis”, which, henceforth, is referred to simply as coherent ICA [5].
The formulation of coherent ICA is rooted in information-theoretic
learning, as described next.

2. COHERENT ICA

The maximization of mutual information principle, commonly known
as theInfomax principle[6], stands out in a dominant way in the
formulation of information-theoretic learning models. The Info-
max principle not only plays a significant role in our understand-
ing of redundancy reduction, the modeling of perception, and the
extraction of independent components [2], but also its variant, the
Imax principle, due to Becker [1], plays an important role of its
own in the extraction of spatially coherent features. In reality, In-
fomax and Imax play complementary roles in the following sense:

Infomax deals with information flow across a net-
work, whereas Imax deals with spatial coherence
across a pair of network outputs.

In the literature, Infomax and Imax have been treated as two unre-
lated principles, ignoring their complementary roles. In this paper,
starting with the two-network structure of Figure 1, we take the op-
posite view by exploiting their combined use, which leads to the

Figure 1: The coupled-network layout for coherent ICA.
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formulation of coherent ICA, hence the reference to it as a “coher-
ent” signal-processing algorithm.

To elaborate on the scenario depicted in Figure 1, where
we have two separate but dimensionally similar neural networks;
networka is characterized by the weight matrixWa, and the other
networkb is characterized by the weight matrixWb.The goal is to
combine the principles of Infomax and Imax into a new learning
strategy for the self-organized training of these two networks. In
particular, the strategy is to be configured in such a way that the
two aforementioned properties, information flow in each network
in accordance with the Infomax principle and spatial coherence
across the neuronal outputs of the two networks on apair-by-pair
basisin accordance with the Imax principle, are integrated into a
composite learning principle.

Consider, first, the Infomax principle applied across the
input-output of each network in Figure 1. Networka is character-
ized by the mutual information

I(Xa;Ya) = E[logpYa(ya)] (1)

where we have ignored an additive constant that is independent
of Wa and therefore immaterial;E is the expectation operator.
With the elements of the output vectorYa being statistically inde-
pendent in accordance with ICA, we may express the probability
density function (pdf) ofYa as

pYa(ya) =

l∏
i=1

pYai(yai)

and therefore go on to rewrite (1) in the equivalent form

I(Ya;Xa) = E

[
l∑

i=1

logpYai(yai)

]
(2)

Similarly, for the other networkb, we have

I(Xb;Yb) = E

[
l∑

i=1

logpYbi(ybi)

]
(3)

Consider next the Imax principle applied across the output
terminals of the two networks, treated on a pair-by-pair basis; we
may express the mutual information between the outputsYai and
Ybi in terms of the copula1 as

I(Yai;Ybi) = E

[
l∑

i=1

logCYai,Ybi(yai, ybi)

]
, i = 1, 2, . . . , l

(4)

1According toSklars theoremon copulas [8]:
Given the cumulative distribution functionsPX,Y (x, y), PX(x), and
PY (y), pertaining to the random variablesX andY , there exists a unique
copulaCU,V (u, v) that satisfies the following pair of relationships:

PX,Y (x, y) = C(PX(x), PY (y))

and
CU,V (u, v) = P (P−1

X (x), P−1
Y (y))

where the two new random variablesU andV are respectively defined by
the nonlinear transformations ofX andY ; that is,

U = PX(x)

and
V = PY (y)

Here, again, with thel outputs of each network in Figure 1 as-
sumed to be statistically independent, the individual contributions
in (4) are additive, yielding the sum

l∑
i=1

I(Yai; Ybi) = E

[
l∑

i=1

logCYai,Ybi(yai, ybi)

]
(5)

To combine the contributions described in (2),(3) and (5)
into a single ensemble-averagedobjective functionthat accounts
for the applications of the Infomax and Imax principles, we simply
write2 (after the combination and simplification of terms)

J(Wa,Wb) = E

[
l∑

i=1

logpYai,Ybi(yai, ybi))

]
(6)

wherepYai,Ybi(yai, ybi) is the joint probability density function
of the random variablesYai and Ybi represented by the sample
values of the network output,yai andybi, respectively for alli =
1, 2, . . . , l. We may now make the statement:

The coherent ICA principle maximizes the joint
objective functionJ(Wa,Wb) with respect to the
weight matricesWa and Wb.

Let wT
ai andwT

bi denote theith row vectors of the weight matrices
Wa andWb, respectively. We may then express

yi =

[
yai

ybi

]
=

[
wT

aixai

wT
bixbi

]
, i = 1, 2, . . . , l (7)

Typically, the data, drawn from natural scenes, tend to besparse.
To satisfy this property, we take the distributions of the compos-
ite output vectoryi to include a zero-mean generalized Gaussian
bivariate distribution with a two-by-two covariance matrixΣ, as
shown by

pYi(yi) =
1

2π(detΣ)1/2
exp

(
−1

2
(yT

i Σ−1yi)
α/2

)
, i = 1, 2, . . . , l

(8)
where the parameterα controls the shape and sparseness of the
copula. The covariance matrixΣ is itself defined by

Σ =

[
1 ρ
ρ 1

]
(9)

2To be rigorous, in place of (6) we should write

J(Wa,Wb) = E

[
l∑

i=1

logpYai
(yai) +

l∑
i=1

logpYbi
(ybi)

]

+ λ

l∑
i=1

E[logCYai,Ybi
(yai, ybi)]

where the parameterλ balances the contributions of Infomax and Imax. In
(6), we have setλ = 1 to simplify the formulation of coherent ICA. From
a theoretical and practical perspective, the generalization of coherent ICA
through the inclusion of the control parameterλ warrants investigation.
However, as we will see later on, in the absence ofλ we are still able to ex-
ercise a trade-off between the contributions of Infomax and Imax through
a correlation coefficientρ, yet to be defined.



2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 21-24, 2007, New Paltz, NY

where thecorrelation coefficientρ controls the extent of correla-
tion between the paired outputsyai andybi for i = 1, 2, . . . , l.
Increasingρ affects the relative importance of Imax over Infomax
by favouring a more “coherent process” being learned jointly by
the two networks. Substituting (7) through (9) into (6) and ignor-
ing the constant term2π(detΣ)1/2 for some prescribedρ, we get
the reformulated objective function

J(Wa,Wb) = −1

2
E

[
l∑

i=1

(yT
i Σ−1yi)

α/2

]
(10)

where the ensemble averaging is performed with respect to the
yi’s. With this objective function at hand, we may now derive
an algorithmic implementation of the coherent ICA principle by
using the instantaneous values of the quadratic termyT

i Σ−1yi for
all i, as an estimate of the expectations in (10), thereby obtaining

Ĵ(Wa,Wb) = −1

2

l∑
i=1

(yT
i Σ−1yi)

α/2

= − 1

2(1− ρ2)

l∑
i=1

(y2
ai − 2ρyaiybi + y2

bi)
α/2

(11)

where we have used the hat in̂J(Wa,Wb) to express it as an es-
timate of the ensemble-averaged objective functionJ(Wa,Wb).

To obtain the adaption rule for the weighted vectorwai,
we use the chain rule of calculus to write

∂Ĵ(Wa,Wb)

∂wai
=

∂Ĵ(Wa,Wb)

∂yai

∂yai

∂wai

= − α

2(1− ρ2)
(yai − ρybi)(y

2
ai − 2ρyaiybi + y2

bi)
α
2 −1xa

(12)

where it is assumed that the variance of both outputs is unity. Ac-
cordingly, the adjustment applied to the weight vectorwai is de-
fined by

∆wai = −2η
∂Ĵ(Wa,Wb)

∂wai

=
αη

1− ρ2
(yai − ρybi)(y

2
ai − 2ρyaiybi + y2

bi)
α
2 −1xa

for all i (13)

where the learning-rate parameterη is assumed to be common to
both networks, andi = 1, 2, . . . , l. Similarly, the adjustment ap-
plied to the weight vectorwbi is defined by

∆wbi =
αη

1− ρ2
(ybi − ρyai)(y

2
ai − 2ρyaiybi + y2

bi)
α
2 −1xb

for all i (14)

During the learning process, it is assumed that the inputs
xa andxa in Figure 1 are bothwhitenedprior to processing; this
is normal practice in ICA-related work. Moreover, after each it-
eration of the learning process, the weights arenormalized, which
constrains the variance of the network outputs to unity. We may
thus express the weight update applied to networka as

wai ← wai + ∆wai (15)

wai ← wai

‖ wai ‖
(16)

for all i; and similarly for networkb.

For applications that involve the modeling of data where
we have two streams consisting of spatially shifted data, as that
described in Figure 1, it is useful to enforce aweight-sharingcon-
straint between the two streams, in which case we set

wai = wbi for all i

Thus, by starting the weight-adaptation rule for coherent ICA with
the same initial weight-matrices assigned to networksa andb, the
weight sharing is maintained at every step of the adaptation rule.

3. APPLICATION OF COHERENT ICA TO AUDITORY
CODING OF NATURAL SOUNDS

In coherent ICA, the goal is to extract information that is main-
tained “coherent” across separate sources while, at the same time,
information flow across the networks associated with the sources
is maximized. Since in amplitude modulation, the envelope varies
slowly compared to the carrier, we may view it as a form of tem-
poral coherence in a limited sense; that is, across two time-steps
∆t seconds apart, we may setx(t + ∆t) ≈ x(t).

For an illustrative application of coherent ICA, we applied
it to a set of speech samples of English speakers taken from the
TIMIT database. The set of sounds comprised an equal number of
male and female speakers, with a total duration of approximately
five minutes. The data were first passed through a grammatone
filter using the Auditory tool Box due to Slaney [9]. The filter
bandwidths were set equal to the equivalent rectangular bandwidth
measurements in humans. In the experiment reported herein, a sin-
gle filter was used, centered at 2 kHz. The resulting output data
were then half-wave rectified (HWR), corresponding to the pri-
mary nonlinearity of the inner-hair cells, yielding the signal

x(t) = HWR(hi(t) ∗ xinput) (17)

wherehi(t) is the impulse response of the grammatone filter,xinput

is its input, and ‘∗’ denotes convolution.

In applying the coherent ICA model to the data set, the
problem can be approached in different ways, depending on how
the input streams applied to networksa andb in Figure 1 are cho-
sen. For our experiment, we chose to mimic theslow-feature anal-
ysis model, where coherence is maximized between two successive
time-steps [10]. The two inputs were overlapping, and in order
to prevent the weights from converging onto trivial solutions, the
weight-sharing constraint was enforced. Thus, we set the weight
matrices

wai = wbi for all i

and if the input applied to networka is

xa(t) = x(t)

then the input applied to networkb is

xb(t) = x(t + ∆t)

where∆t is the duration between two successive time-steps.

The coherent ICA algorithm was applied twice to the data
to learn two successive layers of filters. The first layer used the
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Figure 2: Time and frequency plots obtained for the first layer of
ten filters learned in the experiment on auditory coding of natural
sounds, using coherent ICA.

filtered and rectified speech signalx(t) of (17) as input. After the
ten filters were learned,x(t) was convolved with one of them and
then half-wave rectified as before to constrain the output to remain
above zero. The resulting output was downsampled from 8 kHz
to 1 kHz. Then, a second set of ten filters was learned by treating
the processed output of the first layer as the input to the second
layer. Structurally, the model just described is identical to the phe-
nomenological model proposed by Nelson and Carney [7], with
one key difference:

The filters in our experiment were learned us-
ing coherent ICA, whereas in the Nelson-Carney
model the filters were tuned using physiologically
plausible data to obtain a specific result.

Figures 2 and 3 show the filters learned using coherent ICA ap-
plied to the speech data for the first and second layers of auditory
processing. All the filters are found to be smooth and temporally
localized. Most importantly, the figures clearly show two impor-
tant features:

1. The passband of the filters learned in both layers only in-
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Figure 3: Time and frequency plots obtained for the second layer
of another set of ten filters learned in the experiment on auditory
coding of natural sounds, using coherent ICA.

cludes frequencies within the modulation spectrum, ignor-
ing the carriers altogether.

2. The baseband filters learned in the first layer of processing
have a cutoff frequency that is about ten times that of the
baseband filters learned in the second layer of processing.
In other words, the first layer of our experimental model
(based on coherent ICA) is most responsive to fast changes
in the input auditory signal whereas the second layer of the
model is responsive to slower changes in the input. This
result is exactly what we alluded to in the Introduction.

In short, the two set of filters learned by coherent ICA, applied
to natural sounds, are baseband (modulation) filters that appear
to exhibit properties similar to those of biological neurons in the
cochlear nucleus and inferior colloculus.

4. CONCLUDING REMARKS

In this paper, we have presented some novel ideas, summarized as
follows:
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1. We drew attention to the notion of copulas in statistics,
which can be used to describe the dependencies between
random variables without regard to marginal distributions.
(Copulas do not seem to be known in the signal processing
and information theory literature).

2. We exploited the combined use of the Infomax and Imax
principles to formulate the new coherent ICA principle, which
was implemented in algorithmic form.

3. We used the coherent ICA algorithm to explain the role of
amplitude modulation in auditory processing in the brain,
which was done by applying it to a database of natural
sounds. In particular, we addressed the two basic questions
posed in the introduction experimentally, by presenting two
important results:

(i) The ability of coherent ICA to exhibit amplitude-modulation
tuning, thereby supporting the notion that envelope
processing is embedded in the auditory system.

(ii) The ability of coherent ICA to learn the varying rates
at which two successive processing layers of filters
respond to acoustic stimuli in a manner that mimics
what goes on in the auditory system.

In describing the coherent ICA algorithm and experimenting
with it , we have set the stage for future research in several new
directions:

• Further work on neurobiological plausibility of the algo-
rithm,

• Algorithmic refinements, and

• Novel auditory signal-processing applications of coherent
ICA, including the cocktail party processor.
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