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Nonlinear dynamics are basic to the characterization of many
physical phenomena encountered in practice. Typically, we are
given a time series of some observable(s) and the requirement is
to uncover the underlying dynamics responsible for generating
the time series. This problem becomes particularly challenging
when the process and measurement equations of the dynamics
are both nonlinear and noisy. Such a problem is exemplified by
the case study of sea clutter, which refers to radar backscatter
from an ocean surface. After setting the stage for this case study,
the paper presents tutorial reviews of: 1) the classical models
of sea clutter based on the compoundK distribution and 2) the
application of chaos theory to sea clutter. Experimental results
are presented that cast doubts on chaos as a possible nonlinear
dynamical mechanism for the generation of sea clutter. Most
importantly, experimental results show that on timescales smaller
than a few seconds, sea clutter is very well described as a complex
autoregressive process of order four or five. On larger timescales,
gravity or swell waves cause this process to be modulated in
both amplitude and frequency. It is shown that the amount of
frequency modulation is correlated with the nonlinearity of the
clutter signal. The dynamical model is an important step forward
from the classical statistical approaches, but it is in its early stages
of development.

Keywords—Chaos, complex autoregressive models, compound
K-distribution, modulation, nonlinear dynamics, radar, sea clutter,
short-time Fourier-transform, time-Doppler.

I. INTRODUCTION

Nonlinear dynamics are basic to the characterization
of many physical phenomena encountered in practice.
Typically, we are given a time series of some observable(s)
and the requirement is to uncover the underlying dynamics
responsible for generating the time series. In a fundamental
sense, the dynamics of a system are governed by a pair of
nonlinear equations.
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1) A recursive process equation, which describes the evo-
lution of the hidden state vector of the system with time

(1)

where the vector is the state at discrete time
is thedynamicalor process noise, and is a

vector-valued nonlinear function.
2) A measurement equation, which describes the depen-

dence of observations (i.e., measurable variables) on
the state

(2)

where is the observation (assumed to be scalar),
is the measurement noise, andis a nonlinear

function.
The explicit dependence of both nonlinear functionsand
on time emphasizes the time-varying nature of the dynam-
ical system.

Equations (1) and (2) define the state-space model of a
nonlinear time-varying dynamical system in its most general
form. The exact form of the model adopted in practice is
influenced by two perspectives that are in a state of “tension”
with each other:

1) mathematical tractability;
2) physical considerations.
Mathematical tractability is at its easiest when the system

is linear and the dynamical noise and measurement
noise are both additive and modeled as independent
white Gaussian noise processes. Under this special set of
conditions, the solution to the problem of uncovering the un-
derlying dynamics of the system is to be found in the cele-
brated Kalman filter [1]. In a very clever way, the Kalman
filter solves the problem by exploiting the fact that there is
a one-to-one correspondence between the given sequence of
observable samples and the sequence of innovations derived
from one-step predictions of the observables. The innovation
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Fig. 1. Radar return plots. (a) Data setL2, VV polarization. (b) Data setH , VV polarization.
(c) Data setH , HH polarization.jxj is the magnitude of the complex envelope of the return
signal. Unitsx are normalized.

is defined as the difference between the observationand
its minimum mean-square error prediction given all previous
values of the observation up to and including time .

Unfortunately, many of the dynamical systems encoun-
tered in practice are nonlinear, which makes the problem of
uncovering the underlying dynamics of the system a much
more difficult proposition. Consider, for example, the time
series displayed in Fig. 1. These time series, made up of sam-
pled signal amplitude versus time, were obtained by an in-
strument-quality multifunction radar, which was configured
to monitor a patch of the ocean surface at a low grazing angle.
Appendix A presents a brief description of the radar. The
radar was mounted at a site in Dartmouth, Nova Scotia, on
the east coast of Canada, at a height of about 30 m above the
sea level. The radar was operated in a dwelling mode so that
the dynamics of the sea clutter (i.e., radar backscatter from
the ocean surface) recorded by the radar would be entirely
due to the motion of the ocean waves and the natural motion
of the sea surface itself. Throughout the paper, we will make
extensive use of three different data sets. Two data sets were
measured at low wave-height conditions (0.8 m) and are la-
beled and . For the third data set, labeled, the wave
height was higher (1.8 m); the characteristics of these data
sets are summarized in Appendix B.

From the viewpoint of dynamical systems as characterized
by (1) and (2), we may identify six potential sources respon-

sible for the difficulty in understanding the complex appear-
ance of the time series in Fig. 1.

1) The dimensionality of the state.
2) The function governing the nonlinear evolution of

the state with time.
3) The possible presence of dynamical noise compli-

cating the evolution of the state with time.
4) The function governing the dependence of the radar

observable on the state.
5) The unavoidable presence of measurement noise due

to imperfections in the instruments used to record the
sea-clutter data.

6) The inherently nonstationary nature of sea clutter.

Many, if not all, of these parameters/processes are unknown,
which makes the uncovering of the underlying dynamics of
sea clutter into a challenging task.

Random-looking time series, such as those of Fig. 1, can
be modeled at various levels of sophistication. The crudest
form is to look at the probability density function (pdf) of
the data, ignoring any type of correlation in time. At the next
level, correlations in time are modeled by a linear or higher
order relationship and the residuals are described by their
pdf. A third level of sophistication is sometimes possible
for systems that exhibit low-dimensional dynamics [2]–[7].
For a subset of these systems, namely, deterministic chaotic
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systems, the time series can be described completely in
terms of nonlinear evolutions and, assuming a perfect model
and noise-free measurements, there are no residuals at all.
The deterministic chaos approach has enormous potential
in that it makes it possible to reproduce the mechanism
underlying the experimental data with a computer model.
It has attracted the attention of numerous researchers in
the natural and applied sciences, trying to identify if their
data are close to being chaotic and lend themselves for
a deterministic modeling approach. Chaos theory itself
is motivated by earlier works of Kaplan and Yorke [8],
Packardet al. [9], Takens [10], Mañé [11], Grassberger and
Procaccia [12], Ruelle [13], Wolfet al.[14], Broomhead and
King [15], Saueret al. [16], Sidorowich [17], and Casdagli
[18]. Indeed, these papers aroused interest in deterministic
chaos as a possible mechanism for explaining the underlying
dynamics of sea clutter [19]–[23]. Unfortunately, for reasons
that will be explained later in Section III, currently available
state-of-the-art algorithms used to estimate the chaotic
invariants of sea clutter produce inconclusive results, which
cast serious doubts on deterministic chaos as a possible
mathematical basis for the nonlinear dynamics of sea clutter.
This conclusion has been reinforced further by the inability
to design a reliable algorithm for the dynamic reconstruction
of sea clutter.

All along, our own primary research interests in sea clutter
have been driven by the following issues of compelling prac-
tical importance.

1) Sea clutter is a nonlinear dynamical process with time
playing a critical role in its characterization. By con-
trast, much of the effort devoted to the characterization
of sea clutter during the past 50 years has focused on
the statistics of sea clutter, with little attention given
to time [24]–[30], other than adapting to time-varying
statistical parameters.

2) Understanding the nonlinear dynamics of sea clutter is
not only important in its own right, but it will have a
significant impact on the joint detection and tracking
of a point target on or near the sea surface. Such targets
include low-flying aircraft, small marine vessels, and
floating hazards, e.g., ice.

3) Identifying the particular part of the expanding litera-
ture on nonlinear dynamics, which is applicable to re-
liable characterization of sea clutter.

This paper is written with these objectives in mind, given
what we currently know about the statistics and dynamics
of sea clutter.

The rest of the paper is organized as follows. Section II
presents a tutorial review of the classical models of sea
clutter, with primary emphasis on the compounddistribu-
tion. Section III presents a critical review of results reported
in the literature on the application of deterministic chaos
analysis to sea clutter. The discussion presented therein
concludes that the discovery that a real-world experimental
time series is chaotic has a high risk of being a self-fulfilling
prophecy. We justify this statement by revisiting earlier
claims that sea clutter is the result of a deterministic chaotic

process. In Section IV, we go back to first principles in
modulation theory and present new experimental results
demonstrating that sea clutter is the result of a hybrid con-
tinuous-wave modulation process that involves amplitude
as well as frequency modulation; this section also includes
a time-varying data-dependent autoregressive (AR) model
for sea clutter, which, in a way, relates to our earlier work
on the AR modeling of radar clutter in an air-traffic control
environment [31]–[34]. Section V, the final section of the
paper, presents conclusions and an overview of the current
directions of research on recursive learning models that may
be relevant to the nonlinear dynamics of sea clutter.

II. STATISTICAL NATURE OF SEA CLUTTER—CLASSICAL

APPROACH

Sea clutter, referring to the radar backscatter from the sea
surface, has a long history of being modeled as a stochastic
process, which goes back to the early work of Goldstein
[24]. One of the main reasons for this approach has been
the random-looking behavior of the sea-clutter waveform. In
the classical view, going back to Boltzmann, the irregular be-
havior of a physical process encountered in nature is believed
to be due to the interaction of a large number of degrees of
freedom in the system. Hence, the justification for the statis-
tical approach.

There are three signal domains of the radar waveform in
which the clutter properties need to be characterized: 1) am-
plitude; 2) phase; and 3) polarization. Noncoherent radars
measure only the envelope (amplitude) of the clutter signal.
Coherent radars are able to measure both signal amplitude
and phase. Polarimetric effects are evident in both types of
radar. Before discussing these effects, some background on
the characterization of the sea surface and consideration of
the geometry of a low-grazing angle radar is desirable.

A. Background

It is the nature of the surface roughness that determines
the properties of the radar echo [35]. The roughness of the
sea surface is normally characterized in terms of two funda-
mental types of waves. The first type is termed gravity waves,
with wavelengths ranging from a few hundred meters to less
than a meter. The dominant restoring force for these waves
is the force of gravity. The second type is smaller capillary
waves with wavelengths on the order of centimeters or less.
The dominant restoring force for these waves is surface ten-
sion.

The gravity waves, which describe the macrostructure of
the sea surface, can be further subdivided into sea and swell.
Sea consists of wind waves: steep short-crested waves driven
by the winds in their locale. Swell consists of waves of long
wavelength, nearly sinusoidal in shape, produced by distant
winds. The very irregular appearance of the sea surface is due
to interference of the various wind and swell waves and to
local atmospheric turbulence. Near coastlines, ocean currents
(usually tidal currents) may cause a considerable increase
in the wave heights due to their interference with wind and
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swell waves. The microstructure of the sea surface—the cap-
illary waves—are usually caused by turbulent gusts of wind
near the surface.

Waves are primarily characterized by their length, height,
and period. The phase speed is the ratio of wave length
over wave period. Wavelength and period (hence, phase
speed) can be derived from the dispersion relation [36].
Wave height fluctuates considerably. A commonly reported
measure is significant wave height, defined as the average
peak-to-trough height of the one-third highest waves. It
indicates the predominant wave height.

To provide a simple metric to indicate qualitatively the
current sea conditions, the concept of the sea-state was
introduced in [35, Table 2-1]. The sea-state links expected
wave parameters, such as height and period, to environ-
mental factors including wind speed, duration, and fetch.
The frequently used short form gives the sea-state number
only.

The angle at which the radar beam illuminates the sur-
face is called the grazing angle, measured with respect to
the local horizontal. The smallest area of the sea surface
within which individual targets can no longer be individually
resolved is termed the resolution cell, whose area is given by

sec (3)

where is range, is the azimuthal beamwidth of the an-
tenna, is the speed of light, is the radar pulse length, and

is the grazing angle.
The backscatter power (square of the amplitude) has been

studied at two different time scales. Studies [37] have pro-
duced empirical models, relating the long-term (over several
minutes) average to various parameters, including grazing
angle, radar frequency and polarization, and wind and wave
conditions.

1) Polarimetric Effects:One of the dominant scattering
mechanisms at microwave frequencies and low-to-medium
grazing angles is Bragg scattering. It is based on the prin-
ciple that the returned signals from scatterers that are half
a radar wavelength apart (measured along the line of sight
from the radar) reinforce each other since they are in phase.
At microwave frequencies, the Bragg scatter is from capillary
waves. It has long been observed that there is a difference
in the behavior of sea backscatter depending on the transmit
polarization.1 Horizontally polarized (HH) backscatter has
a lower average power as compared to the vertically polar-
ized (VV) backscatter, as predicted by the composite surface
theory and Bragg scattering [38]. As a consequence, most
marine radars operate with HH polarization. However, the
HH signal often exhibits large target-like spikes in amplitude,
with these spikes having decorrelation times on the order of
one second or more.

Fig. 2 shows the evolution of the Doppler spectrum versus
time for the coherent data used to generate the amplitude
plots of Fig. 1. In this case of incoming waves, the HH spec-

1A signal’s polarization is designated by a two-letter combinationTR,
whereT is the transmitted polarization (H or V) and R is the received po-
larization (H or V).

trum on average is shifted further from the frequency origin
(i.e., has a higher mean Doppler frequency) and, at the times
of strong signal content, the HH spectrum may reach higher
frequencies than does the VV spectrum.

The differences in the spectra suggest that different
scatterers are contributing to the HH and VV returns. They
can be partially explained from conditions associated with
breaking waves. The breaking waves contribute to the
bunching of scatterers, consistent with arguments for the
applicability of the compound distribution [39]. With
the scatterers bunched at or near the crest of the breaking
wave, there is the opportunity for a multipath reflection
from the sea surface in front of the wave. The polarization
dependence arises from the relative phase of the direct and
surface-reflected paths. For VV polarization, the Brewster
effect may lead to strong cancellation of the return, whereas
the HH polarization will exhibit a strong (possibly spiky)
return [39]. The Brewster angle is the particular angle of
incidence for which there is no reflected wave when the
incident wave is vertically polarized.

From -band scatterometer data from advancing waves,
Leeet al. [40] identified VV-dominant comparatively short-
lived “slow (velocity) scatterers” and HH-dominant longer
lived “fast (velocity) scatterers.” Because the water particles
which define a breaking wave crest necessarily exceed the
orbital acceleration of the linear-wave group that initiates
the nonlinear evolution of the wave structure, the fact that
fast scatterers are observed is not surprising. Sea spikes from
advancing waves are collocated with the fastest scatterers,
which are identified with the wave crest. Based on experi-
mental data for approaching waves, Rino and Ngo [39] sug-
gest that the VV backscatter is responding to slower scat-
terers confined to the back side of the wave while HH is re-
sponding to the fast scatterers near the wave crest. The HH re-
sponse to the back-side scatterers (presumed to be Bragg-like
structures) may be suppressed due to the angular dependence
of the Bragg scattering.

B. Current Models

There are two goals related to the modeling of clutter. The
first goal is to develop an explanation for the observed be-
havior of sea clutter and, in so doing, to gain insight into
the physical and electromagnetic factors that play a role in
forming the clutter signal. Based on the success of the first
goal, the second goal is to produce a model, ideally phys-
ically based, with which a representative clutter signal can
be generated, to extend receiver algorithm testing into clutter
conditions for which sufficient real data are unavailable. Two
current models that seek to address the second goal (at least
in one of the signal domains) are the compound-distribu-
tion model and the Doppler spectrum model.

1) Compound Distribution: Characterization of the
amplitude fluctuations of the sea backscatter signal is a
continuing source of study. Much of the early work in
fitting amplitude distributions was based on the use of a
Gaussian model, implying Rayleigh distributed amplitudes.
However, it was soon found that operating with increased
radar resolution and at low grazing angles, the Gaussian
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Fig. 2. Time-Doppler plots. (a) Data setL2, VV polarization. (b) Data setH , VV polarization.
(c) Data setH , HH polarization, using a window size of 0.5 s.

model failed to predict the observed increased occurrence of
higher amplitudes. Researchers began using two-parameter
distributions to empirically fit these longer tails. Such
distributions include Weibull [25], log normal [41], and
[29], [30]. Use of the latter has led to the development of the
compound distribution.

The nature of the sea surface, with its two fundamental
types of waves—short capillary and wind waves and longer
gravity waves—suggests the utility of a model composed of
two (or perhaps more) components. This approach, in var-
ious forms, has been proposed by several researchers (e.g.,
[28], [42]). One such approach is the compounddistri-
bution [28], [29]. From experimental studies, it was found
that over short periods, on the order of a few hundred mil-
liseconds, the sea-clutter amplitude can be fit reasonably well

with a Rayleigh distribution. Then, averaging the data over
periods on the order of 30 ms to remove the fast fluctuation,
the resulting longer term variation could be fit with a Chi
(or root-gamma) distribution. The proposed model is one in
which the overall clutter amplitude is modeled as the product
of a Rayleigh-distributed term and a root-gamma distributed
term. The overall amplitude distribution is given by

(4)

The two pdf’s within the integral (namely, the conditional
pdf of given and the pdf of acting alone) are

(5)
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(a)

(b)

Fig. 3. Plots showing the two time scales of the clutter
amplitude autocorrelation, for the data of Fig. 1(b). (a) Quick
initial decorrelation, on the order of a few milliseconds, of the
fast fluctuation component. (b) Slowly decaying and periodic
correlation of the slow fluctuation component. Oscillation reflects
the periodicity of the swell wave.

and

(6)

Equation (5) shows to be Rayleigh distributed, with
the mean level determined by the value of. The distribution
of given by (6) is Chi or root gamma. Substituting (5) and
(6) into (4) yields

(7)

where .
The resulting overall distribution given by (7) is thedis-

tribution. Hence, the model is termed the compound-dis-
tribution model. The Rayleigh-distributed component may
be considered as modeling the short-term fluctuation of the
scatterers, while the root-gamma distributed component rep-
resents the modulation of the intensity of the scattering in
response to the gravity waves. Since sea clutter is locally
Rayleigh distributed (resulting from application of the cen-
tral limit theorem within a patch), it appears that the non-
Rayleigh nature of the overall clutter amplitude distribution
is due to bunching of the scatterers by the sea wave structure,
rather than being due to a small number of effective scatterers
[29].

We need to consider the correlation properties of the
clutter amplitude. Fig. 3 shows a typical plot of the autocor-
relation of the VV signal on two time scales. Fig. 3(a), based
on a sample period of 1 ms, shows that the correlation due
to the fast fluctuation component is under 10 ms. Fig. 3(b)

Fig. 4. Generic model for generating complex non-Gaussian
correlated data. Thick line denotes the flow of complex quantities
(after [43]).

shows the long-term correlations, on the order of ones. Note,
however, the apparent periodicity of the long-term autocor-
relation, on the order of 6.5 s. This oscillation reflects the
periodicity of the swell wave.

For generating -distributed clutter, both Wardet al.
[29] and Conteet al. [43] have suggested the same basic
structure, shown in Fig. 4. Complex white Gaussian noise

is passed through a linear filter, whose coefficients
are chosen to introduce the desired short-term correlation.
The output of the filter is still Gaussian distributed, so that
the amplitude of is Rayleigh distributed. The modu-
lating term is a real nonnegative signal with a much
longer decorrelation time compared to . To generate a

-distributed amplitude, the should be drawn from a
Chi distribution. Addressing the long-term correlation of
the clutter requires generating correlated Chi-distributed
variates . It is not possible to produce an arbitrary
correlation, but some useful results have been reported.
Gaussian variates are passed through a simple first-order
AR filter, then converted using a memoryless nonlinear
transform into Chi variates with an exponentially decaying
autocorrelation. Watts [44] parameterizes the form of the
autocorrelation in terms of the clutter decorrelation time and
the shape parameter of the distribution. Details can be
found in Conteet al. [43], Watts [44], and Tough and Ward
[45].

2) Doppler Spectrum:A coherent radar is able to
measure both the amplitude and the phase of the received
signal. The received baseband signal is a complex voltage,
given either in terms of its inphase () and quadrature ()
components or its magnitude (amplitude) and phase angle.
Movement of the scatterer relative to the radar causes a
pulse-to-pulse change in the phase of the radar echo. This
phase change is equivalent to a Doppler frequency shift,
given as

(8)

where is the radar wavelength and is the Doppler
frequency shift resulting from the movement at a velocity

along the radial between the radar and the scatterer. The
Doppler spectrum of sea clutter results from two main
processes: the spread about the mean Doppler frequency
is a manifestation of the random motion of the unresolved
scatterers, while the displacement of the mean Doppler fre-
quency maps the evolution of the resolved waves. Tracking
the evolution of the Doppler spectrum versus time can
provide insight into the scattering mechanisms and identify
properties that a sea-clutter model should possess.
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Note that in a realistic sea surface scenario, there will be
a continuum of waves of various heights, lengths, and direc-
tions. This continuum is typically characterized by a wave
frequency spectrum (or wave-height spectrum), describing
the distribution of wave height versus wave frequency. There
are a number of models relating environmental parameters
such as wind speed to the frequency spectrum [46]. The fre-
quency spectrum can then be extended to the directional fre-
quency spectrum by introducing a directional distribution
[47]. Under the assumption of linearity, the combined effect
is the superposition of all the waves, calculated by integrating
across the appropriate range of directional wave numbers.
In reality, the final surface is a nonlinear combination of the
continuum of waves.

Walker [48] studied the development of the Doppler
spectra for HH and VV polarizations as breaking waves
passed the radar sampling area. Coincident video images
were taken of the physical wave. Three types of scattering
regimes appear to be important: Bragg, whitecap, and spike
events. Walker [49] proposes a three-component model for
the Doppler spectrum based on these regimes.

1) Bragg Scattering:This regime makes VV amplitude
greater than HH. Both polarizations peak at a fre-
quency corresponding to the velocity ,
where is the term attributable to the Bragg scat-
terers and is a term encompassing the drift and
orbital velocities of the underlying gravity waves. The
decorrelation times of the two polarizations are short
(tens of millseconds).

2) Whitecap Scattering:The backscatter amplitudes of
the two polarizations are roughly equal and are notice-
ably stronger than the background Bragg scatter, par-
ticularly in HH, in which Bragg scattering is weak. In
a time profile, the events may be seen to last for times
on the order of seconds, but are noisy in structure and
decorrelate quickly (again, in milliseconds). Doppler
spectra are broad and centered at a speed noticeably
higher than the Bragg speed, at or around the phase
speed of the larger gravity waves.

3) Spikes:Spikes are strong in HH, but virtually absent in
VV, with a Doppler shift higher than the Bragg shift.
They last for a much shorter time than the whitecap
returns (on the order of 0.1 s), but remain coherent over
that time.

Each of these three regimes is assigned a Gaussian line
shape, with three parameters: 1) its power (radar cross-sec-
tion); 2) center frequency; and 3) frequency width. Assuming
the overall spectrum is a linear combination of its compo-
nents, the VV spectrum is the sum of Bragg and Whitecap
lineshapes, while the HH spectrum is the sum of Bragg,
Whitecap, and Spike lineshapes.

The model has been validated with experimental cliff-top
radar data, for which the widths and relative amplitudes of the
Gaussian lineshapes were determined using a minimization
algorithm.

Other researchers have similarly identified Bragg and
faster-than-Bragg components, using Gaussian lineshapes
for the former, and Lorentzian and/or Voigtian lineshapes

for the latter [40]. The results were reported for the case of
breaking waves but in the absence of wind.

In this section, we have focused on the classical statistical
approach for the characterization of sea clutter. In the next
section, we consider deterministic chaos as a possible mech-
anism for the nonlinear dynamics of sea clutter.

III. I S THERE A RADAR CLUTTER ATTRACTOR?

The Navier–Stokes dynamical equations are basic to
the understanding of the underlying principles of fluid
mechanics, including ocean physics [50]. Starting with these
equations, Lorenz [51] derived an unrealistically simple
model for atmospheric turbulence, which is described by
three coupled nonlinear differential equations. The model,
bearing his name, was obtained by deleting everything from
the Navier–Stokes equations that appeared to be extraneous
to the simplest mathematical description of the model.
The three equations, governing the evolution of the Lorenz
model, are deceptively simple, but the presence of certain
nonlinear terms in all three equations gives rise to two
unusual characteristics:

1) a fractal dimension equal to 2.01;
2) sensitivity to initial conditions, meaning that a very

small perturbation in initialization of the model results
in a significant deviation in the model’s trajectory in a
relatively short interval of time.

These two properties are the hallmark of chaos [52], a sub-
ject that has captured the interests of applied mathematicians,
physicists, and, to a much lesser extent, signal-processing re-
searchers during the past two decades.

A. Nonlinear Dynamics

Before anything else, for a process to qualify as a chaotic
process, its underlying dynamics must be nonlinear. One
test that we can use to check for the nonlinearity of an
experimental time series is to employ surrogate data analysis
[53]. The surrogate data are generated by using a stochastic
linear model with the same autocorrelation function or,
equivalently, power spectrum as the given time series. The
exponential growth of interpoint distances between these
two models is then used as the discriminating statistic to test
the null hypothesis that the experimental time series can be
described by linearly correlated noise. For this purpose, the
Mann–Whitney rank-sum statistic, denoted by the symbol

, is calculated. The statistic is Gaussian distributed with
zero mean and unit variance under the null hypothesis that
two observed samples of interpoint distances calculated for
the experimental time series and the surrogate time series
come from the same population. A value of less than

3.0 is considered to be a solid reason for strong rejection
of the null hypothesis, i.e., the experimental time series is
nonlinear [54].

Appendix B summarizes three real-life sea-clutter data
sets, which were collected with the IPIX radar on the east
coast of Canada. (A brief description of the IPIX radar is
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presented in Appendix A.) Specifically, the data sets used in
the case study are as follows.

1) Data set , corresponding to a lower sea state, with
the ocean waves moving away from the radar. The
sampling frequency of this data set is twice that of the
other two data sets and .

2) Data set , corresponding to a higher sea state, with
the ocean waves coming toward the radar.

3) Data set , corresponding to a lower sea state, taken
earlier the same day as data setand at a radar range
of 4 km compared to 1.2 km for data set. This differ-
ence in range causes to have a considerably better
signal-to-noise ratio (SNR) than .

Two different types of surrogate data were generated.

1) Data sets , and , which were de-
rived from sea clutter data sets , , and , respec-
tively, using the Tisean package described in [55]. The
method keeps the linear properties of the data speci-
fied by the squared amplitude of its Fourier transform,
but randomizes higher order properties by shuffling
the phases.

2) Data sets and , which are derived from
sea-clutter data sets and , respectively, using a
procedure based on the compounddistribution, as
described in [43].

Table 1 summarizes the results of applying thetest
to the real-life and surrogate data sets. The calculations
involving surrogate data sets , and
were repeated four times with different random seeds to
get a feel for the variability of the -statistic (and chaotic
invariants to be discussed). Based on the results summarized
in Table 1, we may state the following.

1) Sea clutter is nonlinear (i.e., is less than 3) when
the sea state is high.

2) Sea clutter may be viewed as linear (i.e.,is consider-
ably larger than 3) when the sea state is low and the
ocean waves are moving away from the radar. How-
ever, when the ocean waves are coming toward the
radar, sea clutter is nonlinear (i.e.,is less than 3)
even when the sea state is low.

3) The surrogate data sets have largervalues (i.e., less
evidence for nonlinearity) than their original counter-
parts. (Surrogate data sets and
are linear by construction.)

On the basis of these results, we may state that sea clutter
is a nonlinear dynamical process, with the nonlinearity de-
pending on the sea state being moderate or higher and the
ocean waves moving toward or away from the radar.

The next question to be discussed is whether sea clutter is
close to being deterministic chaotic. If so, we may then apply
the powerful concepts of chaos theory.

B. Chaotic Invariants

In the context of a chaotic process, two principal features,
namely, the correlation dimension and Lyapunov exponents,
have emerged as invariants, with each one of them high-
lighting a distinctive characteristic of the process.

Table 1
Summary ofZ Tests and Correlation Dimension

Physical processes that require an external source of
energy are dissipative. For sea clutter, wind and temperature
differences (caused by solar radiation) are the external
sources of energy. A dissipative chaotic system is char-
acterized by its own attractor. Consider then the set of all
admissible initial conditions in the multidimensional state
space of the system and call this the initial volume. The
existence of an attractor implies that the initial volume
eventually collapses onto a geometric region whose dimen-
sionality is smaller than that of the original state space.
Typically, the attractor has a multisheet structure that arises
from the interplay between stabilizing and disrupting forces.
The correlation dimension, originated by Grassberger and
Procaccia [12], provides an invariant measure of the geom-
etry of the attractor. For a chaotic process, the correlation
dimension is always fractal (i.e., noninteger).

Whereas the correlation dimension characterizes the
distribution of points in the state space of the attractor, the
Lyapunov exponents describe the action of the dynamics
defining the evolution of the attractor’s trajectories. Suppose
that we now picture a small sphere of initial conditions
around a point in the state space of the attractor and then
allow each initial condition to evolve in accordance with
the nonlinear dynamics of the attractor. Then, we find that
in the course of time the small sphere of initial conditions
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evolves into an ellipsoid. The Lyapunov exponents measure
the exponential rate of growth or shrinkage of the principal
axes of the evolving ellipsoid. For a process to be chaotic, at
least one of the Lyapunov exponents must be positive so as
to satisfy the requirement of sensitivity to initial conditions.
Moreover, the sum of all Lyapunov exponents must be
negative so as to satisfy the dissipative requirement.

With this brief overview of chaotic dynamics, we return to
the subject at hand: the nonlinear dynamics of sea clutter.

In an article published in 1990, Leung and Haykin [19]
posed the following question: “Is there a radar clutter at-
tractor?” By applying the Grassberger–Procaccia algorithm
to sea clutter, Leung and Haykin obtained a fractal dimension
between six and nine. Independently of this work, Palmeret
al. [20] obtained a value between five and eight for the cor-
relation dimension of sea clutter.

These initial findings prompted Haykin and coinvestiga-
tors to probe more deeply into the possible characterization
of sea clutter as a chaotic process by looking into the second
invariant: Lyapunov exponents. Haykin and Li [22] reported
one positive Lyapunov exponent followed by an exponent
very close to zero and several negative exponents. This was
followed by a more detailed investigation by Haykin and
Puthusserypady [23], using state-of-the-art algorithms:

1) a maximum-likelihood-based algorithm for estimating
the correlation dimension [56];

2) an algorithm based on Shannon’s mutual information
for measuring the embedding delay [57], [58];

3) global embedding dimension, using the method of
false nearest neighbors [59]; the embedding dimen-
sion is defined as the smallest integer dimension that
unfolds the attractor;

4) local embedding dimension, using the method of local
false nearest neighbors [60]; the local embedding di-
mension specifies the size of the Lyapunov spectrum;

5) an algorithm for estimating the Lyapunov exponents,
which involves recursive QR decomposition applied
to the Jacobian of a function that maps points on the
trajectory of the attractor into corresponding points a
prescribed number of time steps later [61], [62].

The findings reported by Haykin and Puthusserypady [23]
are summarized as follows:

1) correlation dimension between four and five;
2) Lyapunov spectrum consisting essentially of five ex-

ponents, with two positive, one close to zero, and the
remaining ones negative, with the sum of all the expo-
nents being negative;

3) Kaplan–Yorke dimension, derived from the Lyapunov
spectrum, very close to the correlation dimension.

These findings were so compelling, in light of known chaos
theory, that the generation of sea clutter was concluded to be
the result of a chaotic mechanism, on which we have more
to say in Section III-E.

C. Inconclusive Experimental Results on the Chaotic
Invariants of Sea Clutter

The algorithms currently available for estimating the
chaotic invariants of experimental time series work very

Table 2
Summary of Lyapunov Exponents

well indeed when the data are produced by mathematically
derived chaotic models (e.g., the Lorenz attractor), even in
the presence of additive white noise so long as the SNR
is moderately high. Unfortunately, they do not have the
necessary discriminative power to distinguish between a
deterministic chaotic process and a stochastic process. We
have found this serious limitation for all the algorithms in
our chaos analysis toolbox. The estimates of the correlation
dimension and Lyapunov spectrum are summarized in
Tables 1 and 2. Based on these results, we may make the
following observations.

1) Examining the last column of Table 1 on the max-
imum-likelihood estimate of the correlation dimen-
sion, we see that for all practical purposes, there is
little difference between the correlation dimension of
sea-clutter data and that of their surrogate counterparts
that are known to be stochastic by design.

2) Examining Table 2 on the estimates of Lyapunov
spectra and the derived Kaplan–Yorke dimension, we
again see that a test based on Lyapunov exponents is
incapable of distinguishing between the dynamics of
sea-clutter data and their respective stochastic surro-
gates. Similar results on the inadequate discriminative
power of these algorithms are reported in [63].

We, thus, conclude that although sea clutter is nonlinear,
its chaotic invariants are essentially the same as those of the
surrogates that are known to be stochastic. The notion of non-
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linearity alone does not imply deterministic chaos; it merely
excludes the possibility that a linear mechanism is respon-
sible for the generation of sea clutter.

D. Dynamic Reconstruction

All along, the driving force for the work done by Haykin
and coinvestigators has been the formulation of a robust dy-
namic reconstruction algorithm to make physical sense of
real-life sea clutter by capturing its underlying dynamics.
Such an algorithm is essential for the reliable modeling of sea
clutter and the improved detection of a target in sea clutter.
Successful development of such a dynamical reconstruction
algorithm was also considered to be further evidence of de-
terministic chaos as the descriptor of sea-clutter dynamics.

To describe the dynamic reconstruction problem, with
chaos theory in mind, consider an attractor whose process
equation is noiseless, and whose measurement noise is
additive, as shown by the following:

(9)

(10)

Suppose that we use the set of noisy observations
to construct the vector

(11)

where is the embedding delay equal to an integer number of
time units and is the embedding dimension. As the obser-
vations evolve in time, the vector defines the underlying
attractor, thereby providing a fiducial trajectory. The stage is
now set for stating the delay-embedding theorem due to [10],
[11], and [16].

Given the experimental time series of a single
scalar component of a nonlinear dynamical system, the
geometric structure of the hidden dynamics of that system
can be unfolded in a topologically equivalent manner in
that the evolution of the points in the
reconstructed state space follows the evolution of the points

in the original state space, provided that
, where is the fractal dimension of the

system and the vector is related to the given time series
by (11).

Ideas leading to the formulation of the delay-embedding
theorem were described in an earlier paper by Packardet al.
[9].

A key point to note here is that since all the variables of
the system are geometrically related to each other in a non-
linear manner, as shown in (9) and (10), measurements made
on a single component of the nonlinear dynamical system
contain sufficient information to reconstruct the multidimen-
sional state .

Derivation of the delay-embedding theorem rests on two
key assumptions:

1) the model is noiseless, i.e., not only is the state equa-
tion (9) noiseless, but the measurement equation (10)
is also noiseless [i.e., ];

2) the observable data set is infinitely long.

Under these conditions, the theorem works with any delay
so long as the embedding dimensionis large enough to

unfold the underlying dynamics of the process of interest.
Nevertheless, given the reality of a noisy dynamical model

described by (9) and (10) and given a finite record of obser-
vations , the delay-embedding theorem may be
applied provided that a “reliable” method is used for esti-
mating the embedding delay. According to Abarbanel [64],
the recommended method is to compute that particularfor
which the mutual information between and its de-
layed version attains its minimum value and the
recommended method for estimating the embedding dimen-
sions is to use the method of false nearest neighbors.

A distinction must be made between dynamic recon-
struction and predictive modeling. Predictive modeling is
an open-loop operation, which merely requires that the
prediction error (i.e., the difference between the present
value of a time series and its nonlinear prediction based on a
prescribed set of past values of the time series) be minimized
in the mean-square sense. Dynamic reconstruction is more
profound in that it builds on a predictive model by requiring
closed-loop operation. Specifically, the predictive model is
initialized with data drawn from the same process under
study, but not seen before and then the model’s output is
delayed by one time unit and fed back to the input layer
of the model, making room for this new input sample by
leaving out the oldest sample in the initializing data set. This
procedure is continued until the entire initializing data set
is completely disposed of. Thereafter, the model operates
in an autonomous manner, producing an output time series
learned from the data during the training (i.e., open-loop
predictive) session.

It is amazing that dynamic reconstruction, as described
herein, works well for time series derived from mathemat-
ical models of deterministic chaos, even when the time se-
ries is purposely contaminated with additive white noise of
relatively moderate average power (see, e.g., [65]).

Unfortunately, despite the persistent use of different
reconstruction procedures involving the use of a multilayer
perceptron trained with the back-propagation algorithm
[22], regularized radial-basis function networks [66], and
recurrent multilayer perceptrons trained with the extended
Kalman filter [65], the formulation of a reliable procedure
for the dynamic reconstruction of sea clutter based on the
delay-embedding theorem has eluded us. The key question
is: why? A feasible answer is offered in Section III-E.

Serious difficulties with the dynamic reconstruction of sea
clutter prompted the authors of this paper in September 2000
to question the validity of a chaotic model for describing
the nonlinear dynamics of sea clutter, despite the highly en-
couraging results summarized in Section III. Indeed, it was
because of these serious concerns that a complete reexam-
ination of the nonlinear dynamical modeling of sea clutter
was undertaken, as detailed in Section IV. However, before
moving onto that section, we conclude the present discus-
sion on chaos by highlighting some important lessons learned
from our work on the application of deterministic chaos to
sea clutter.
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E. Chaos, a Self-Fulfilling Prophecy?

Chaos theory provides the mathematical basis of an ele-
gant discipline for explaining complex physical phenomena
using relatively simple nonlinear dynamical models. As with
every scientific discipline that requires experimentation with
real-life data, we clearly need reliable algorithms for esti-
mating the basic parameters that characterize the physical
phenomenon of interest, given an experimental time series.
As already mentioned, there are two invariants that are basic
to the characterization of a chaotic process:

1) correlation dimension;
2) Lyapunov exponents.
Unfortunately, state-of-the-art algorithms for estimating

these invariants do not have the necessary discriminative
power to distinguish between a deterministic chaotic process
and a stochastic process. For the experimenter who hopes
his/her data qualify for a deterministic chaotic model, the
results of a chaotic invariant analysis may end up working
as a self-fulfilling prophecy, indicating the existence of
deterministic chaos regardless of whether the data are really
chaotic or not. The stochastic process could be colored
noise or a nonlinear dynamical process whose state-space
model includes dynamical noise in the process equation.
As pointed out in Sugihara [67], when we have noise in
both the process and measurement equations of a nonlinear
dynamical model, there is unavoidable practical difficulty
in disentangling the dynamical (process) noise from the
measurement noise to reconstruct an invariant measure.
Specifically, in the estimation of Lyapunov exponents, it
is no longer possible to compute meaningful products of
Jacobians from the experimental time series because the
invariant measure is contaminated with noise.

How do we explain the possible presence of dynamical
noise in the state-space model of sea clutter? To answer this
question, we first need to remind ourselves that ocean dy-
namics are affected by a variety of forces, as summarized
here [50]:

1) gravitational and rotational forces, which permeate
the entire fluid, with large scales compared with most
other forces;

2) thermodynamic forces, such as radiative transfer,
heating, cooling, precipitation, and evaporation;

3) mechanical forces, such as surface wind stress, atmo-
spheric pressure variations, and other mechanical per-
turbations;

4) internal forces—pressure and viscosity—exerted by
one portion of the fluid on other parts.

With all these forces acting on the ocean dynamics and, there-
fore, directly or indirectly influencing radar backscatter from
the ocean surface, three effects arise:

1) evolution of the hidden state characterizing the under-
lying dynamics of sea clutter due to the constant state
of motion of the ocean surface;

2) generation of some form of dynamical noise, contam-
inating this evolution with time, due to the natural rate
of variability of the forces acting on the ocean surface;

3) imposition of a nonstationary spatio-temporal struc-
ture on the radar observable(s).

Hence, given the physical reality that in addition to measure-
ment noise, there is dynamical noise to deal with and the fact
that there is usually no prior knowledge of the measurement
noise or dynamical noise, it is not surprising that the dynamic
reconstruction of sea clutter using experimental time series
is a very difficult proposition.

IV. HYBRID AM/FM M ODEL OF SEA CLUTTER

In Section III, we have expressed doubts on the validity
of the deterministic chaos approach as the descriptor of sea
clutter. In this section, we take a detailed look at several ex-
perimental data sets to explore new ways to model sea clutter.
Apart from the classical approaches reviewed in Section II,
one source of inspiration is the recent work of Gini and Greco
[68], who view sea clutter as a fast “speckle” process, mul-
tiplied by a “texture” component that represents the slowly
varying mean power level of the data—caused by large waves
passing though the observed ocean patch. They model the
speckle as a stationary compound complex Gaussian process
and the texture as a harmonic process. What we will find
is that the relationship between the slow and fast varying
process is much more involved than what has been assumed
so far in the literature. In particular, we find that the slowly
varying component does not only modulate the amplitude of
the speckle, but also its mean frequency and spectral width.

A. Radar Return Plots

We use the data sets and from Appendix B. The
analysis starts by looking at the radar return plots of these
data sets, shown in Fig. 5. These plots show the strength
of the radar return signal (color axis) as a function of time
( axis) and range ( axis). A red color indicates a strong
return, which is associated with wave crests. The diagonal
red stripes in both plots show that the wave crests move,
with increasing time, toward a decreasing range or toward
the radar. Indeed we see from Appendix B that the wind and
radar beam point in almost opposite directions. If we look at
a single range bin, i.e., along a horizontal line in the radar
return plots, we see that the strength of the return signal is
roughly periodic, with a period in the order of 4–8 s, corre-
sponding to the period of the gravity waves (see Section II).
In Fig. 1(a)–(c), such a single range bin is plotted against
time, the axis now being return strength (amplitude of the
received signal). The periodic behavior is less pronounced
due to the wild short-term fluctuations of the signal, which
are caused by Rayleigh fading.

B. Rayleigh Fading

Rayleigh fading arises when a number of complex expo-
nentials of slightly different frequency are added together.
Fig. 6 shows the magnitude and instantaneous frequency of
the sum , with

, and is varied and denotes the
square root of 1. In Fig. 6(a), is equal to and in
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Fig. 5. Radar return versus time and range, VV polarization, of (a) data setL2 (low sea state)
and (b) data setH (high sea state). Color axis showslog(j~xj), where~x is the complex envelope
of the unreceived signal. Units~x are normalized and the color axis changes from blue (low)
via green to red (high).

Fig. 6(b), it is 10% larger. The figure illustrates the typical
upside down U shape of the magnitude of a Rayleigh fading
process, with a period that follows

(12)

Looking at the closeup of our data in Fig. 7, we see that both
the magnitude and instantaneous frequency have the typical
characteristics of Rayleigh fading, although in Section IV-C,
we will find that most spikes in the time series
are actually caused by receiver noise.

Why does Rayleigh fading occur? The answer lies in the
independent scatterer model that Jakeman and Pusey [27]
first used to derive a physical justification for the use of the

distribution (see Section II). If we think of a patch of
ocean illuminated by the radar at a given time, according to
this model, the received signal will be dominated by a small
number of independent scatterers, each moving at its own ve-
locity. We make the additional restriction that, at least for the
short duration of a single sample time, each scatterer has its
own constant velocity with respect to the radar. The received
signal can then be written as

(13)

where is the angular radio frequency of the radar (equal
9.39 GHz for the IPIX radar), is the number of indepen-
dent scatterers, is proportional to the effective radar cross-
section of scatterer, and and are the Doppler
frequency and phase of scattererat time , respectively.
After removing the carrier wave by multiplying by ,
we see that (13) is indeed a sum of complex exponentials with
slightly different frequencies, thereby resulting in Rayleigh
fading. The frequencies are related to the physical speed of
the scatterer by (8).

Now that we have established the Rayleigh fading char-
acteristics of sea clutter amplitude data, we go back to (12),
which relates, for the case of two complex exponentials, the
period of the amplitude signal to the frequency difference
of the two exponentials. Sea clutter has much more than
two complex exponentials and they are constantly changing
frequency, but as a coarse approximation, (12) may still be
useful. As a rough estimate for the average of sea
clutter, we use the average cycle time (ACT) of the data: sub-
tract the median of the signal and take the average time be-
tween two upward zero crossings. For the left-hand term of
(12), we need to estimate , the frequency variability
of sea clutter. This we estimate by taking the measured in-
stantaneous frequency and computing its normalized median
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Fig. 6. (a) and (b) Magnitude and (c) and (d) instant frequency of the sum of two complex
exponentialsexp(i2�t) + exp(i2�1:1t). (a) and (c)exp(i2�t) + 1:1 exp(i2�1:1t). (b) and (d)
Instant frequency is computed as the difference between the phase of subsequent samples, after
unwrapping the phase to remove2� jumps.

Fig. 7. (a) Closeup of the radar return signal of Fig. 1(b) and (b) corresponding instant frequency
_� . It is computed(� � �)=(2��t), where the phase� is first unwrapped to remove jumps
larger than� and�t is the sampling time of 1 ms.

absolute deviation (NMAD). The NMAD is a robust estimate
of the signal’s standard deviation, ignoring the spikes. It is
computed as

NMAD median median (14)

For the example of Fig. 7, we have s and
Hz. If we take twice the standard de-

viation as our measure of variability, then the result satisfies

(12), as . In Fig. 8, we look at how the
two quantities 2NMAD and 1/ACT( ) evolve with time.
We use a moving window of 1000 samples (1 s). For the high
sea state, the two curves almost overlap, in agreement with
(12). For the low sea state, the curves do not overlap, but they
follow the same trends.

It is interesting to also try to link the variability of to
itself. If we could do this, then even with an inexpensive
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Fig. 8. 1/ACT(j~xj) (solid line) and 2NMAD( _�) (dotted line) versus time, computed on a 1000
sample sliding window basis, for (a) data setL2 and (b) data setH .

Fig. 9. If the magnitude of the amplitude signal is high compred
to the receiver noise level, the error� in the estimation of the angle
� can be approximated by the tangential component of the receiver
noise, divided by the magnitude of the signal. If the receiver noise
is uncorrelated, the variance of� � � is 2� .

noncoherent radar, using only the envelope of the received
signal, the radar could provide a rough estimate of the speed
of the observed waves. This is not the focus of this paper, but
the strong correlation seen in Fig. 11(d) shows the viability
of this approach.

C. Time-Doppler Spectra

Since the independent scatterer model tells us that the
received signal is the sum of a number of complex expo-
nentials, it is most appropriate to describe the signal in
terms of its Fourier spectrum. However, as waves move
along the observed ocean patch, we expect the number and
strength of the scatterers to vary. Therefore, we again use a
sliding window, this time of length 512 (0.5 s), to compute
time-varying frequency spectra. When the frequency is
converted into Doppler velocity using (8), they become the
time-Doppler spectra of Fig. 2(a)–(c). The plots are very

Fig. 10. Time-Doppler spectrum of 50 s of data synthesized with
the method of Conteet al. [47]. (Data provided by A. Thomson.)

revealing, showing that the Doppler frequency fluctuations
are a lot stronger for the higher sea-state clutter. Note also
how the spectral width in the time-Doppler plots varies with
time; this variation follows the same trend as the NMAD()
signal of (14), which was introduced in Section IV-B.

The spectrogram contains many frequencies that are only
activated by the receiver noise part of the data. We estimated
the receiver noise level by comparing the total power of the
signal to the power in the part of the Doppler spectrum below

4 m/s. The SNR is found to be 17 dB for data setand
31 dB for data set , the difference being caused by the
difference in range and the reduced overall power of lower
sea-state clutter.

The noise estimates are very useful to estimate the vari-
ance of the signals we derived from the data. For example, we
can see immediately that most of the spikes in thetime se-
ries occur when the signal drops below the noise floor. What
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Fig. 11. (a) and (c) Low-pass-filtered amplitude (1 s averaging). (b) and (d) Low-pass-filtered instant
frequency _� (solid line) and NMAD (_�) (dotted line). (a) and (b) Data setL2. (c) and (d) Data setH .

is the variance of the signal? If the magnitude of the signal
is well above the noise floor, can be estimated using
(see Fig. 9)

where is the receiver noise level. From this estimate, it
appears that the NMAD() signal in Fig. 8(a) (data set )
is dominated by receiver noise, whereas in Fig. 8(b) (data set

), it is dominated by the clutter signal. For data set, this
means that we now expect an inverse relationship between
NMAD( ) and the amplitude of the signal. This relationship
is clearly visible if we compare the solid line in Fig. 11(a) to
the dotted line in Fig. 11(b).

D. Amplitude Modulation, Frequency Modulation, and
More

Almost invariably, models for sea clutter distinguish be-
tween the slow time scale of the gravity waves and the fast
time scale of the capillary waves. A typical approach is that
of Conteet al.[43], consisting of a colored noise process that
is amplitude-modulated by a slowly varying intensity com-
ponent. Fig. 10 shows the time-Doppler spectrum for such
data. The results in the previous sections teach us that there
is a much more intricate relationship between the fast- and
the slow-varying processes.

When a large wave passes through the ocean patch under
surveillance, it will first accelerate and then decelerate the
water on the ocean surface. The tilting of the ocean surface by
the wave causes the amplitude modulation. Even if scatterers
arise mostly on the crest of the wave, the wave will cause a
cyclic motion of the velocity of the scatterers. This motion is
widely recognized, but its consequence, namely, a frequency
modulation of the speckle component, has been neglected.
And there is more. When the mean velocity of the scatterers
is high at a given instant, then the spread around that mean
is also high. We can now explain why almost invariably we
found sea clutter to be nonlinear, when we presented the re-
sults in Table 1. Recognizing that amplitude modulation is a
linear form of modulation, but frequency modulation is not
[69], we expect the value of to become more negative as the
amount of frequency modulation increases. Fig. 12 confirms
this qualitative relationship by plotting the value versus
the amount of frequency modulation. Apart from the datasets

and , the figure uses an additional 75 datasets
from our sea-clutter database, measured at a wide variety of
experimental conditions. It is no surprise that the surrogate
data sets used in Table 1 are less nonlinear than their orig-
inal counterparts, since the random phase shifting partially
destroys the frequency modulation. The typical “breathing”
seen in time-Doppler plots, such as the ones in Fig. 2, shows
that not only the mean of the velocity spectrum, but also its
spectral width are modulated. Moreover, in some cases, the
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Fig. 12. Z value versus NMAD (_�), computed for 78 datasets
measured by the IPIX radar at various experimental conditions.

velocity spectrum even has a bimodal distribution [around
time 45 to 50 s in Fig. 2(b)]; recent work of Walker [48]
shows that this is most likely caused by a breaking wave.

So far, we have identified four different processes acting
on the dynamics of the speckle component: 1) amplitude
modulation; 2) frequency modulation; 3) spectral-width
modulation; and 4) bimodal frequency distributions due to
breaking waves. All these processes, which have the slow
time scale of gravity waves, need to be specified in order
to synthesize artificial radar data. In Fig. 11, we look for
possible correlation between the various types of modula-
tion. The relation between the amplitude modulation and
frequency modulation seems weak [compare solid lines in
Fig. 11(a) to (b) and (c) to (d)]. Fig. 11(d) shows that there
is a strong correlation between the frequency modulation
( averaged over 1 s) and the spectral-width modulation,
measured by NMAD(). This correlation is not confirmed
by the equivalent plots for low sea state in Fig. 11(b), but is
due to receiver noise, as argued in Section IV-C.

E. Modeling Sea Clutter as a Nonstationary Complex
Autoregressive Process

So far, our results have not made the sea-clutter synthesis
much easier—it seems we almost have to provide the en-
tire time-Doppler spectrum to get a complete signature of
the observed data. As a first step toward a practical algo-
rithm, in this section, we compress the time-Doppler spec-
trum into only a few complex parameters per time slot and,
at the same time, we make it suitable for time-series gener-
ation. We argue as follows, using observations from the pre-
ceding discussion.

1) On time-scales shorter than several seconds, sea clutter
can be described as the sum of complex exponentials.

2) A sum of complex exponentials is well described in
terms of its Fourier spectrum.

3) The Fourier spectrum of a dynamical system can often
be approximated most efficiently by an AR process.

This brings us to the concept of a time-varying complex
AR process. We take a 1-s window (1000 samples), slide it
through data set (pertaining to a higher sea state) with
small time increments, and each time we fit a complex
AR process to the data. We search for the lowest order
time-varying AR model that approximates the short-time
Fourier transforms (vertical lines in the time-Doppler spec-
trum) well. When we increase the order from one to four,
the standard deviation of the residual error, averaged over
time, decreases: 0.23, 0.11, 0.091, 0.086 in units of signal
standard deviations. In the same units, the receiver noise
as estimated from the time-Doppler spectrum is 0.061. The
improvement with model order is very clear from Fig. 13,
which shows time-Doppler spectra of synthesized clutter,
using time-varying AR processes of order one, two, and
three, denoted as AR(1), AR(2), and AR(3), respectively.
The data are generated according to the difference equation

(15)

where all variables are complex, are the AR coeffi-
cients at time with , the brackets indicate
that they change on a slow time scale only,is the model
order, and is the noise process having a time-varying
variance .

The AR model of order 1 is clearly insufficient to describe
sea clutter in good detail, but it is by far the easiest to analyze
in physical terms. It has three independent parameters that
vary slowly with time: 1) the amplitude of ; 2) the angle
of ; and 3) the variance of the noise . Fig. 14 shows
how these three independent parameters are coupled to the
three main types of modulation mentioned in Section IV-D.
Indeed, we could rewrite the nonstationary AR(1) process
into an equivalent stationary AR(1) process, modulated in
amplitude, frequency, and spectral width. Unfortunately, the
sliding AR(1) does not provide a good enough description of
the data and we need to investigate in future work what phys-
ical mechanism it is that the AR(2) and AR(3) have captured
but the AR(1) has not.

V. DISCUSSION ANDCONCLUSION

Sea clutter, referring to radar backscatter from an ocean
surface, is a nonstationary complex nonlinear dynamical
process with a discernible structure that exhibits a multitude
of continuous-wave modulation processes: 1) amplitude
modulation; 2) frequency modulation; 3) spectral-width
modulation; and 4) bimodal frequency distribution due to
breaking waves. The modulations are slowly varying (in
the order of seconds) functions of time. The amplitude
modulation is clearly discernible in the sea-clutter wave-
form, regardless of the sea state or whether the ocean waves
are moving away from the radar or coming toward it. The
frequency modulation and variations in spectral width and
spectral shape become clearly observable when the nonlinear
nature of sea clutter becomes pronounced. This happens
when the sea state is higher or the ocean waves are coming
toward the radar. These observations on the nonlinearly
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Fig. 13. Time-Doppler spectra of data synthesized by a sliding AR process of order (a) 1, (b) 2, and
(c) 3. Three plots have identical color axis limits. Lighter background color in (a) is caused by the
larger residual error of the sliding AR(1) model.

modulated nature of sea clutter have become clear from the
detailed experimental study reported in Section IV. This
study paves the way for a new phemenological approach to
the modeling of sea clutter in terms of all its modulating
components. In subsequent work, we will extend the work
to the full body of experimental data that we gathered on
the east coast of Nova Scotia in 1993. We have already
developed a website that will also enable others to use this
valuable resource and contribute to this exciting field.2

A. State-Space Theory

The adoption of a state-space model for sea clutter is a
natural choice for describing the nonstationary nonlinear dy-

2See http://soma.crl.mcmaster.ca/ipix.

namics responsible for its generation. Most importantly, time
features explicitly in such a description.

The challenge in the application of a state-space model to
sea clutter is basically two-fold:

1) the formulation of the process and measurement equa-
tions (including the respective dynamical and mea-
surement noise processes), which are most appropriate
for the physical realities of sea clutter;

2) the use of a computational procedure, which is not only
efficient but also most revealing in terms of the phe-
nomenological aspects of sea clutter.

Each of these two issues is important in its own way.
In light of the material presented in Sections III and IV and

contrary to conclusions reported in earlier papers [19]–[23],
we have now come to the conclusion that sea clutter is not
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Fig. 14. Amplitude, frequency, and spectral width modulation exhibited by the nonstationary
complex AR(1) process, trained on a 1000-sample sliding window of data setH . (a)
Low-pass-filtered amplitude of data setH and of the model (� )=(1� ja j )(�=2) versus time
(plots overlap almost completely). (b) 1 s median-filtered (_�) and a f =(2�) versus time.f
is the pulse repetition frequency of 1000 Hz (plots overlap almost completely). (c) NMAD( _�)
(dotted line) and spectral width of the model, computed bycos ((1� 4ja j+ ja j )=(�2ja j))
(see [77]) versus time.

the result of deterministic chaos.3 By definition, the process
equation of a deterministic chaotic process is noise-free. In
reality, however, the process equation of sea clutter contains
dynamical noise due to the fast fluctuations of the various
forces, which act on the ocean surface. As pointed out by
Heald and Stark [72], there is no physical system that is en-
tirely free of noise and no mathematical model that is an exact
representation of reality.4 We must, therefore, expect noise in
both the process and measurement equations of sea clutter,
with two important consequences.

1) There is unavoidable practical difficulty in disentan-
gling the dynamical noise from the measurement noise
when we try to reconstruct an invariant measure [67].
This may be the reason for why currently available
algorithms for estimating chaotic invariants are inca-

3We do not rule out the possibility of stochastic chaos or a mixture of sev-
eral deterministic chaos as well as stochastic mechanisms being responsible
for generating the nonlinear dynamics of sea clutter. The notion ofstochastic
chaosand related issues are discussed in [67], [70], and [71]. However, we
do not have the tools to distinguish between stochastic chaos and stochastic
processes using real-life data.

4Heald and Stark [72] describe a Bayesian procedure for estimating the
variance of dynamical noise for the case when the noise processes in the
nonlinear state-space model are additive.

pable of discriminating between sea clutter and its sto-
chastic surrogates.

2) The delay-embedding theorem for dynamic recon-
struction is formulated on the premise of a deter-
ministic process. Although, from an experimental
perspective, it is possible to account for the presence
of measurement noise through a proper choice of
embedding delay and embedding dimension [64], it
is difficult to get around the unavoidable presence of
dynamical noise in the process equation. This may
explain the reason why it is very difficult to build
a predictive model for sea clutter that solves the
dynamic reconstruction problem in a reliable manner.

Next, addressing the issue of a computational procedure
for studying the nonlinear dynamics of sea clutter, the use of
a time-varying complex-valued AR model, as described in
Section IV, is attractive for several reasons.

1) An AR model of relatively low order (four or five)
appears to have the capability of capturing the major
features of the nonlinear dynamics of sea clutter.

2) The AR model lends itself to a “phenomenological”
rather than “black-box” analysis of sea clutter.
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In a related way, it is noteworthy that, starting from the mid
1970s and for much of the 1980s, the first author of this paper
and other coinvestigators showed that a complex-valued AR
model of relatively low order (four or five) provides a re-
liable method for modeling the different forms of coherent
radar clutter, namely, ground clutter, rain clutter, and clutter
due to a flock of migrating birds in an air-traffic control en-
vironment [31]–[34]. It is ironic that we now find that a com-
plex-valued AR model of similar order is also capable of
modeling sea clutter.

B. Nonlinear Dynamical Approach Versus Classical
Statistical Approach

The main focus of the classical approach, as discussed in
Section II, has been to model (and, hopefully, explain) the
amplitude statistics of sea clutter. The emphasis is on point
statistics, with no attention given to the temporal dimension.
Some efforts have simply involved empirical fitting of dis-
tributions to the observed clutter data. Other studies have
tried to provide some theoretical basis for the selection of
the clutter behavior in order to make the problem mathemat-
ically tractable. For example, the assumption that we have
discrete, independent scatterers permits the application of
random-walk theory in developing theoretical solutions. This
approach was used in the original development of thedis-
tribution [27]. However, the applicability and efficiency of
the model is determined by the validity of the assumptions
made in its development. The appeal of the compound-dis-
tribution model is that it can be cast as the overall distribution
for the product of two terms—one Rayleigh-distributed and
the other Chi-distributed—which, in turn, have been found
to empirically fit the two time scales of sea-clutter data in
many cases. The main motivation for the development of
clutter amplitude statistical models has been in their use for
estimating the performance of various target-detection algo-
rithms. The algorithms do not make use of the temporal prop-
erties of the clutter per se; rather, they seek to adapt the deci-
sion thresholds in response to changes in the point statistics
of the clutter signal.

By contrast, the nonlinear dynamical approach, advocated
in this paper, accounts for time in an explicit manner. More-
over, the explicit need for a statistical model is avoided by
using real-life data to compute the parameters of a complex
AR model or state-space model of sea clutter in an online
fashion; the complex nature of the model parameters is at-
tributed to the inphase and quadrature components of clutter
data generated by a coherent radar. In this alternative ap-
proach, the information content of the input data is trans-
ferred directly to the model parameters evolving over time.

C. New Sequential Learning Models

From a synthesis point of view, in this paper we have fo-
cused attention on a time-varying complex AR model for sea
clutter. However, there is merit to the idea of exploring the
application of new sequential learning models to sea clutter
to see what difference, if any, they can make to our improved
understanding of the nonlinear dynamics of sea clutter. In
this context, two different procedures stand out as being note-
worthy of attention:

1) derivative-free state estimation, which is inspired by
extended forms of classical Kalman filters;

2) sequential Bayesian estimation using a class of se-
quential Monte Carlo methods, which are known as
particle filters, survival of the fittest, and condensation.

The derivative-free state-estimation procedures are de-
signed to overcome serious limitations of the extended
Kalman filter when the problem of interest involves the
study of a nonlinear dynamical system. The idea here is to
eliminate the need for computing Jacobians and Hessians
(both of which involve partial derivatives) by using multiple
forward propagations [73], [74] or, alternatively, using
Sterling’s formula for approximating a nonlinear function
over an interval of selected length [75].

The sequential Bayesian estimation procedure is perhaps
more powerful in that it permits us to tackle a very complex
nonlinear dynamical problem that was previously unsolved,
namely, the problem of estimating the parameters, hyperpa-
rameters (i.e., covariances of the dynamical and measure-
ment noise components of the state-space model), and model
structure of parametric models evolving over time [76]. This
is, indeed, the very essence of using experimental time se-
ries to construct a state-space model for sea clutter. The only
drawback of this second approach is that it is computation-
ally intensive, yet it lends itself to straightforward implemen-
tation on a parallel computer.

APPENDIX A
DESCRIPTION OF THEIPIX RADAR

The IPIX radar is a transportable experimental radar
system designed and constructed at McMaster University.
It was built specifically with research in mind and is very
flexible in its design and configuration. Begun in the late
1980s, the radar underwent major redesign in 1991 and
further upgrade in 1995. Its major features are listed below.

1) Transmitter:

a) 8-kW peak power TWT;
b) H or V polarization, switchable pulse to pulse;
c) frequency-fixed (9.39 GHz) or agile over 8.9–9.4

GHz;
d) pulsewidth 20–200 ns (20-ns steps), 200–5000 ns

(200-ns steps);
e) pulse repetition frequency up to 20 kHz, limited by

duty cycle (2%) or polarization switch (4 kHz);
f) pulse repetition interval, configurable on a

per-pulse basis.

2) Receiver:

a) fully coherent reception;
b) two linear receivers; H or V on each receiver (usu-

ally, one H and one V for dual-polarized recep-
tion);

c) instantaneous dynamic range50 dB;
d) 8-bit sampling, or 10-bit with hardware integration;
e) four A/Ds: I and Q for each of the two receivers;
f) range sampling rate up to 50 MHz
g) full-bandwidth digitalized data saved to disk,

archived into CD.
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Table 3
(a) Data Set L1. Low Sea State, Sampling Frequency 2000 Hz. (b)
Data Set L2. Low Sea State, Sampling Frequency 1000 Hz. (c)
Data Set H. High Sea State, Sampling Frequency 1000 Hz

(a)

(b)

(c)

3) Antenna:

a) 2.4-m-diameter parabolic dish;
b) pencil beam, beamwidth of 0.9;
c) 44-dB gain;
d) side lobes dB;
e) cross-polarization isolation;
f) computer-controlled positioner;
g) to 90 in elevation;
h) rotation through 360in azimuth, 0–10 rpm.

4) General:

a) radar system configuration and operation com-
pletely under computer control;

b) user operates radar within an IDL environment.

APPENDIX B
SPECIFICATIONS OF THETHREESEA CLUTTER SETSUSED IN

THIS PAPER

The radar data were measured in 1993 from a clifftop near
Dartmouth, Nova Scotia, at a height of 30 m above the mean
sea level, facing an open view of the Atlantic Ocean of about
130 . Table 3 lists the data sets.

ACKNOWLEDGMENT

The authors would like to thank C. Lesner, who expressed
skepticism on the validity of deterministic chaos for the non-
linear dynamics of sea clutter in the early months of 2000,
and Dr. B. Shahrrava and Z. Chen for many useful discus-
sions on the nonlinear dynamics of sea clutter. They would
also like to thank Dr. A. Thomson of the Defence Research
Establishment Ottawa for supplying the surrogate data for
data sets and using the compound distribution. Fi-
nally, they would like to thank the helpful comments made
by the two anonymous reviewers in finalizing the paper.

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction
problems,”Trans. ASME J. Basic Eng., ser. D, vol. 82, pp. 35–45,
Mar. 1960.

[2] F. A. Ascioti, E. Beltrami, T. O. Caroll, and C. Wirick, “Is there chaos
in plankton dynamics?,”J. Plank. Res., vol. 15, no. 6, pp. 603–617,
1993.

[3] J. H. Lefebvre, D. A. Goodings, M. V. Kamath, and E. L. Fallen,
“Predictability of normal heart rhythms and deterministic chaos,”
Chaos, vol. 3, no. 2, pp. 267–276, Apr. 1993.

[4] A. A. Tsonis and J. B. Elsnor, “Nonlinear prediction as a way of
distinguishing chaos from random fractal sequences,”Nature, vol.
358, pp. 217–220, 1992.

[5] N. A. Gershenfeld and A. S. Weigend, “The future of time series,
learning and understanding,” inTime Series Prediction, Forecasting
the Future and Understanding the Past, A. S. Weigend and N. A.
Gershenfeld, Eds. Reading, MA: Addison-Wesley, 1993, pp. 1–70.

[6] H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. Sh. Tsimrin,
“The analysis of observed chaotic data in physical systems,”Rev.
Mod. Phys., vol. 65, no. 4, pp. 1331–1392, Oct. 1993.

[7] J. D. Farmer, “Sensitive dependence on parameters in nonlinear dy-
namics,”Phys. Rev. Lett., vol. 55, no. 4, pp. 351–354, July 1985.

[8] J. Kaplan and E. Yorke,Chaotic Behavior of Multidimensional Dif-
ference Equations. Berlin, Germany: Springer-Verlag, 1979, vol.
730, Lecture Notes in Mathematics, pp. 228–237.

[9] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw,
“Geometry from a time series,”Phys. Rev. Lett., vol. 45, no. 9, pp.
712–716, Sept. 1980.

[10] F. Takens,Detecting Strange Attractors in Turbulence, ser. Lecture
Notes in Mathematics, 1981, vol. 898, pp. 366–381.

[11] R. Mañé,On the Dimension of Compact Invariant Sets of Certain
Nonlinear Maps. Berlin, Germany: Springer-Verlag, 1981, vol.
898, Lecture Notes in Mathematics, pp. 230–242.

[12] P. Grassberger and I. Procaccia, “Measuring the strangeness of
strange attractors,”Physica D, vol. 9, pp. 189–208, 1983.

[13] D. Ruelle, “Deterministic chaos: The science and the fiction,”Proc.
R. Soc. Lond., vol. A-427, pp. 241–248, 1990.

[14] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining
Lyapunov exponents from a time series,”Physica D, vol. 16, pp.
285–317, 1985.

[15] D. S. Broomhead and G. P. King, “Extracting quantitative dynamics
from experimental data,”Physica D, vol. 20, pp. 217–226, 1986.

[16] T. Sauer, J. A. Yorke, and M. Casdagli, “Embedology,”J. Stat. Phys.,
vol. 65, no. 3–4, pp. 579–617, 1991.

HAYKIN et al.: UNCOVERING NONLINEAR DYNAMICS—THE CASE STUDY OF SEA CLUTTER 879



[17] J. J. Sidorowich, “Modeling of chaotic time series for prediction,
interpolation and smoothing,” inProc. ICASSP, vol. IV, San Fran-
scisco, CA, 1992, pp. 121–124.

[18] M. Casdagli, “Nonlinear prediction of chaotic time series,”Physica
D, vol. 35, no. 3, p. 335, 1989.

[19] H. Leung and S. Haykin, “Is there a radar clutter attractor?,”Appl.
Phys. Lett., vol. 56, pp. 393–395, 1990.

[20] A. J. Palmer, R. A. Kropfli, and C. W. Fairall, “Signatures of deter-
ministic chaos in radar sea clutter and ocean surface winds,”Chaos,
vol. 5, no. 3, pp. 613–616, Sept. 1995.

[21] H. Leung and T. Lo, “Chaotic radar signal-processing over the sea,”
IEEE J. Oceanic Eng., vol. 18, pp. 287–295, July 1993.

[22] S. Haykin and X. B. Li, “Detection of signals in chaos,”Proc. IEEE,
vol. 83, pp. 94–122, Jan. 1995.

[23] S. Haykin and S. Puthusserypady, “Chaotic dynamics of sea clutter,”
Chaos, vol. 7, no. 4, pp. 777–802, 1997.

[24] H. Goldstein,Sea Echo in Propagation of Short Radio Waves, D.
E. Kerr, Ed. New York: McGraw-Hill, 1951, MIT Radiation Lab.
Series.

[25] F. A. Fay, J. Clarke, and R. S. Peters, “Weibull distribution applied
to sea-clutter,” inProc. IEE Conf. Radar’77, London, U.K., 1977,
pp. 101–103.

[26] G. V. Trunk, “Radar properties of non-Rayleigh sea clutter,”IEEE
Trans. Aerosp. Electron. Syst., vol. AES-8, pp. 196–204, Mar. 1972.

[27] E. Jakeman and P. N. Pusey, “A model for non-Rayleigh sea echo,”
IEEE Trans. Antennas Propagat., vol. AP-24, pp. 806–814, Nov.
1976.

[28] K. D. Ward, “Compound representation of high resolution sea
clutter,” Electron. Lett., vol. 17, no. 6, pp. 561–563, Aug. 6, 1981.

[29] K. D. Ward, C. J. Baker, and S. Watts, “Maritime surveillance radar
Part 1: Radar scattering from the ocean surface,”Proc. Inst. Elect.
Eng., vol. F137, no. 2, pp. 51–62, Apr. 1990.

[30] T. Nohara and S. Haykin, “Canadian East Coast radar trials and the
K-distribution,”Proc. Inst. Elect. Eng., vol. F138, no. 2, pp. 80–88,
1991.

[31] S. B. Kesler, “Nonlinear Spectral Analysis of Radar Clutter,” Ph.D.
dissertation, McMaster Univ., Hamilton, ON, Canada, 1977.

[32] S. Haykin, B. W. Currie, and S. B. Kesler, “Maximum-entropy spec-
tral analysis of radar clutter,” inProc. IEEE, vol. 70, Sept. 1982, pp.
953–962.

[33] W. Stehwien, “Radar clutter classification,” Ph.D. dissertation, Mc-
Master Univ., Hamilton, ON, Canada, 1989.

[34] S. Haykin, W. Stehwien, C. Deng, P. Weber, and R. Mann, “Classi-
fication of radar clutter in an air traffic control environment,”Proc.
IEEE, vol. 79, pp. 742–772, June 1991.

[35] M. W. Long,Radar Reflectivity of Land and Sea. Norwood, MA:
Artech House, 1983.

[36] G. Neumann and W. Pierson,Principles of Physical Oceanog-
raphy. Englewood Cliffs, NJ: Prentice-Hall, 1966.

[37] H. Sittrop, “On the sea-clutter dependency on wind speed,” inProc.
IEE Conf. Radar’77, London, U.K., 1977.

[38] G. R. Valenzuela, “Theories for the interaction of electromagnetic
waves and oceanic waves—A review,”Bound. Layer Meteorol., vol.
13, no. 1–4, pp. 61–65, 1978.

[39] C. L. Rino and H. D. Ngo, “Numerical simulation of low-grazing-
angle ocean microwave backscatter and its relation to sea spikes,”
IEEE Trans. Antennas Propagat., vol. 46, pp. 133–141, Jan. 1998.

[40] P. H. Y. Lee, J. D. Barter, B. M. Lake, and H. R. Thompson, “Line-
shape analysis of breaking-wave Doppler spectra,”Proc. Inst. Elect.
Eng. Radar Sonar Navig., vol. 145, no. 2, pp. 135–139, 1998.

[41] H. C. Chan, “Radar sea-clutter at low grazing angles,”Proc. Inst.
Elect. Eng., pt. F, vol. 137, no. 2, pp. 102–112, 1990.

[42] J. W. Wright, “A new model for sea clutter,”IEEE Trans. Antennas
Propagat., vol. AP-16, pp. 217–223, 1968.

[43] E. Conte, M. Longo, and M. Lops, “Modeling and simulation of non-
Rayleigh radar clutter,”IEE Proc. F, vol. 138, no. 2, pp. 121–130,
1991.

[44] S. Watts, “Cell-averaging CFAR gain in spatially correlatedK-dis-
tributed clutter,”Proc. Inst. Elect. Eng. Radar Sonar Navig., vol.
143, no. 5, pp. 321–327, 1996.

[45] R. J. A. Tough and K. D. Ward, “The correlation properties of gamma
and other non-Gaussian processes generated by memoryless non-
linear transformation,”J. Phys. D Appl. Phys., vol. 32, no. 23, pp.
3075–3084, Dec. 1999.

[46] W. J. Pierson and L. Moskowitz, “A proposed spectral form for fully
developed wind seas based on the similarity theory of S. A. Kitaig-
orodskii,” J. Geophys. Res., vol. 69, no. 24, pp. 5181–5203, 1964.

[47] M. A. Donelan and W. J. Pierson, “Radar scattering and equilibrium
ranges in wind-generated waves with application to scatterometry,”
J. Geophys. Res., vol. 92, no. 5, pp. 4971–5029, 1987.

[48] D. Walker, “Experimentally motivated model for low grazing angle
radar Doppler spectra of the sea surface,”Proc. Inst. Elect. Eng.
Radar Sonar Navig., vol. 147, no. 3, pp. 114–120, 2000.

[49] , “Doppler modeling of radar sea clutter,”Proc. Inst. Elect. Eng.
Radar Sonar Navig., vol. 148, no. 2, pp. 73–80, 2001.

[50] J. R. Apel,Principles of Ocean Physics. New York: Academic,
1987, vol. 38, International Geophysics Series.

[51] E. N. Lorenz, “Deterministic nonperiodic flows,”J. Atmos. Sci., vol.
20, pp. 130–141, 1963.

[52] E. Ott, Chaos in Dynamical Systems. Cambridge, U.K.: Cam-
bridge Univ. Press, 1993.

[53] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer,
“Testing for nonlinearity in time series: The method of surrogate
data,”Physica D, vol. 58, no. 77, 1992.

[54] A. Siegel, Non-Parametric Statistics for the Behavioral Sci-
ences. New York: McGraw-Hill, 1956.

[55] T. Schreiber and A. Schmitz, “Surrogate time series,”Physica D,
vol. 142, no. 3–4, p. 346, Aug. 2000.

[56] J. C. Schouten, F. Takens, and C. M. Van den Bleek, “Estimation of
the dimension of a noisy attractor,”Phys. Rev. E, vol. 50, no. 3, pp.
1851–1861, Sept. 1994.

[57] A. M. Fraser and H. L. Swinney, “Independent coordinates for
strange attractors from mutual information,”Phys. Rev. A, vol. 33,
no. 2, pp. 1134–1140, Feb. 1986.

[58] A. M. Fraser, “Information and entropy in strange attractors,”IEEE
Trans. Inform. Theory, vol. 35, pp. 245–262, Mar. 1989.

[59] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining em-
bedding dimension for phase-space reconstruction using a geomet-
rical construction,”Phys. Rev. A, vol. 45, no. 6, pp. 3403–3411, Mar.
1992.

[60] H. D. I. Abarbanel and M. B. Kennel, “Local false nearest neighbors
and dynamical dimensions from observed chaotic data,”Phys. Rev.
A, vol. 47, no. 5, pp. 3057–3068, May 1993.

[61] R. Brown, P. Bryant, and H. D. I. Abarbanel, “Computing the Lya-
punov exponents of a dynamical system from observed time series,”
Phys. Rev. E, vol. 43, no. 6, pp. 2787–2806, Mar. 1991.

[62] K. Briggs, “An improved method for estimating Lyapunov expo-
nents of chaotic time series,”Phys. Lett. A, vol. 151, pp. 27–32, 1990.

[63] C. P. Unsworth, M. R. Cowper, B. Mulgrew, and S. McLaughlin,
“False detection of chaotic behavior in the stochastic compound
K-distribution model of radar sea clutter,” inProc. IEEE Workshop
Statistical Signal and Array Processing, Aug. 2000, pp. 296–300.

[64] H. D. I. Abarbanel,Analysis of Observed Chaotic Data. New York:
Springer-Verlag, 1996.

[65] G. S. Patel and S. Haykin, “Chaotic dynamics,” inKalman Filtering
and Neural Networks, S. Haykin, Ed. New York: Wiley, 2001, pp.
83–122.

[66] S. Haykin, S. Puthusserypady, and P. Yee,Dynamic Reconstruction
of Sea Clutter Using Regularized RBF Networks. Pacific Grove,
CA: ASILOMAR, 1998.

[67] G. Sugihara, “Nonlinear forecasting for the classification of natural
time series,”Philos. Trans. R. Soc. Lond. A, vol. 348, no. 1688, pp.
477–495, 1994.

[68] F. Gini and M. Greco, “Texture modeling and validation using
recorded high resolution sea clutter data,” inProc. IEEE Radar
Conf., Atlanta, GA, May 2001, pp. 387–392.

[69] S. Haykin, Communication Systems, 4th ed. New York: Wiley,
2000.

[70] R. J. Deissler and J. D. Farmer, “Deterministic noise amplifiers,”
Physica D, vol. 55, no. 1–2, pp. 155–165, Feb. 1992.

[71] Q. Yao and H. Tong, “On prediction and chaos in stochastic sys-
tems,”Philos. Trans. R. Soc. Lond. A, vol. 348, pp. 357–369, 1994.

[72] J. P. M. Heald and J. Stark, “Estimation of noise levels for models
of chaotic dynamical systems,”Phys. Rev. Lett., vol. 84, no. 11, pp.
2366–2369, 2000.

[73] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter
to nonlinear systems,” inProc. 11th Int. Symp. Aerospace/Defence
Sensing, Simulation, and Controls, vol. 3068, SPIE Proceedings, Or-
lando, FL, Apr. 1997, pp. 182–193.

[74] E. A. Wan and R. van der Merwe, “The unscented Kalman filter for
nonlinear estimation,” inProc. IEEE Symp. Adaptive Systems for
Signal Processing, Communication, and Control, Lake Louise, AB,
Canada, 2000, pp. 153–158.

880 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 5, MAY 2002



[75] M. Nørgaard, N. Poulsen, and O. Ravn, “Advances in derivative-free
state estimation for nonlinear systems,” Tech. Univ. Denmark, Den-
mark, Tech. Rep. IMM-REP-1998–15, 2000.

[76] C. Andrieu, N. deFreitas, and A. Doucet, “Robust full Bayesian
learning for radial basis networks,” Eng. Dept., Cambridge Univ.,
Cambridge, U.K., Manuscript 2101, 2000.

[77] M. B. Priestley,Spectral Analysis and Time Series. New York:
Academic, 1981.

Simon Haykin (Fellow, IEEE) received the
B.Sc. (first-class honors), Ph.D., and D.Sc.
degrees in electrical engineering from the
University of Birmingham, Birmingham, U.K.,
in 1953, 1956, and 1967, respectively.

He is the founding Director of the Commu-
nications Research Laboratory at McMaster
University, Hamilton, ON, Canada, where he
was awarded the title “University Professor”
in 1996. His current research interests include
nonlinear dynamics, neural networks, adaptive

filters, and their applications in radar and communication systems.
Dr. Haykin is a Fellow of the Royal Society of Canada. He received the

IEEE McNaughton Gold Medal in 1986 and the Canadian Telecommuni-
cations Award from Queen’s University. He is the Editor ofAdaptive and
Learning Systems for Signal Processing, Communications and Control,a
new series of books for Wiley-Interscience.

Rembrandt Bakker received the M.S. degree in
chemical engineering from the Delft University
of Technology, Delft, The Netherlands, in 1995.

He continued to work at Delft University on
the project “Modeling Chaotic Dynamics in Real
World Systems, Applied to Fluidized Bed Chem-
ical Reactors,” which resulted in an algorithm for
solving the inverse problem of creating a chaotic
system that can reproduce the characteristics
of measured real-world chaotic data. In 1999,
he joined Shell Global Solutions as a Nonlinear

Data Analyst. He is currently a Postdoctoral Fellow with Simon Haykin
at the Adaptive Systems Laboratory at McMaster University, Hamilton,
ON, Canada. His current research interests include distinguishing between
nonlinear systems that are either low-dimensional chaotic or stochastically
driven and to detect deterministic signals in a background of colored noise.

Brian W. Currie received the B.Eng. degree in
engineering physics and the M.Eng. degree in
electrical engineering from McMaster Univer-
sity, Hamilton, ON, Canada, in 1974 and 1976,
respectively.

Since that time, he has held various research
and managerial positions in the Communications
Research Laboratory of McMaster University
and is now a Principal Research Engineer in
the Adaptive Systems Laboratory. He is also re-
sponsible for McMaster University’s IPIX radar

system. His current research interests include radar signal processing, small
target detection in sea clutter, radar meteorology, wireless communications,
and nonlinear systems.

HAYKIN et al.: UNCOVERING NONLINEAR DYNAMICS—THE CASE STUDY OF SEA CLUTTER 881


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


