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A Dynamic Regularized Radial Basis
Function Network for Nonlinear,
Nonstationary Time Series Prediction
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Abstract—In this paper, constructive approximation theorems an approach is justifiable only when the dynamics of the
are given which show that under certain conditions, the standard plant or time series do not change appreciably over time,
Nadaraya-Watson regression estimate (NWRe&gn be considered \hich js a condition that is often violated in practice. As a

a specially regularized form of radial basis function networks . . .
(RBEN's). From this and another related result, we deduce result, recent effoits have bggn Q|rected toward incorporating
that regularized RBFN's are m.s. consistent, like the NWRE Some degree of time-adaptivity into the RBFN so that both
for the one-step-ahead prediction of Markovian nonstationary, nonstationary and stationary processes mayréekedon an
nonlinear autoregressivetime series generated by i.i.d. noise gngoing basis. For example, in the weakly stationary case, one
processes. Additionally, choosing the regularization parameter to piont assumen priori that the observed output time series is
be asymptotically optimagives regularized RBFN’s the advantage . . . .
of asymptotically realizing minimum m.s. prediction error. Two  lin€ar in a number of unknowstate variablesobtained by
update algorithms (one with augmented networks/infinite memory transforming the observable input time series through a given
and the other with fixed-size networks/finite memoyyare then radial basis function (where the input vector is composed from
proposed to deal with nonstationarity induced by time-varying delayed samples of the input time series). In such a case, if

regression functions. For the latter algorithm, tests on several . . L
phonetically balanced male and female speech samples show anthe observed output process is assumed to contain additive

average 2.2-dB improvement in the predicted signal/noise (error) White Gaussian noise so that the optimal linear weights are
ratio over corresponding adaptive linear predictors using the posteriorly Gaussian distributed, we may apply the standard
exponentially-weighted RLS algorithm. Further RLS filtering of  |inear Kalman filter (which in this case reduces to tbeursive
the predictions from an ensemble of three such RBFN's combined |a55t-squares (RLS) algorithmto recursively estimate the
with the usual autoregressive inputs increases the improvement - - g .
to 4.2 dB, on average, over the linear predictors. required we|ghts [6]. In[7], this gpproach is naturglly extended
to a nonstationary case by using extendedversion of the
RLS algorithm that allows the optimal state-space weights
w*(¢) to drift according to arandom walkmodel [8]. For
modally nonstationary time series, i.e., time series generated
|. INTRODUCTION by piecewise constant switching amongst a fixed number
LONG with the multilayer perceptron (MLP)adial of state-space mappings and first-order Markovian transition
basis function (RBF)networks hold much interest in between modes, they further usenaltiple model algorithnto
the currentneural network (NN)literature [1]. Theiruni- select (via Bayes inference) the “best” predictor from a number
versal approximation property (UAHR] and straightforward of candidate models running in parallel. Other applications of
computation using a linearly weighted combination of singlBayesian inference in the nonstationary case can be found in
hidden-layer neurons have made RBFN's, particularly tj8] and [10]. In these works, howevearbitrary nonlinear
Gaussian RBF (GaRBFhetwork, natural choices in suchstate-space mappings, i.e., those not necessarily in the linear
applications asonlinear system identification [3] and time span of the chosen radial basis functions, are accommodated by
series prediction [4], [5]. In many approaches, the RBFN &xtended (in the case of [9]) and iterated (in the case of [10])
trained once on a large example set taken from the unknoextended Kalman filters of second and higher order which
plant or times series and believed to capture the essengisdduce recursive Bayes estimates of the RBFN weights that
dynamics of the underlying system. Thereafter, the networkbgst approximate (in mean-square) the nonlinear mapping. As
allowed to operate autonomously by sequentially generatingth all methods, the success of these methods hinges on the
outputs in response to newly arriving data. Clearly, sucfalidity of their accompanying assumptions.
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additional results, allows us to prove the (global) mean-squafe, is

(m.s.) consistency of the RBF class aplag-in predictor for n
certain ergodic and mixingonlinear autoregressive (NLAR) ()2 ZW"J(')Y(j) (3)
processes under the same conditions as is known for the =1

NWRE. In particular, this result implies that the RBF classh W . iaht f ion I th | hall
yields m.s. consistent predictors for Markovian NLAR timd" er% "J('.) r']s fa weig t ufnchtlo? n the sequel, we sha
series generated by i.i.d. noise processes, which can be dgppsider weight functions of the form
sidered a first generalization of the usual linear AR processes. K(|-—=Z(DlI/hn)

: : - . : W) =—
We also investigate the possibility afynamically updating .
predictors in this RBF class by developing twecursive > K- =Z(@)|/hn)
algorithms, where one gives the network infinite memory i=1

and the other finite memory, to deal with the nonstationarifyjhere K: R+ — R is usually a non-negative, Riemann

generated by time-varying regression functions. As a practigalegrable function rapidly decreasing to zero away from
application of the theory, experimental results for speeghe origin, while {4..} is a sequence of positiveandwidth
prediction are then given in which we also demonstrate howsarameters. The resultant function estimate is an instance of
number of dynamic regularized RBF networks can be linearfije Nadaraya—Watson estimate (NWR@&) normalized KRE

(4)

combined to improve overall prediction accuracy. [13]-[15]. With the basic conditions
lim h, =0, lim nh¢ =00 (5)

Il. KERNEL REGRESSION ANDREGULARIZED
RADIAL BASIS FUNCTION NETWORKS on the bandwidth sequence, various modes of asymptotic

The application of kernel regression to the minimum m_g_onsistenhcy ca; Ipeyst]owq to hqldd for tge NV%RE .in ”the
error (m.m.s.e.) prediction of time series is a firmly establishg;%;ﬂg‘seS where{(Z(:),Y(?))} is an independent, identically

technique; for an overview, see [16] and [17]. In the followin ,|_st_ributed (iid.) process and (with slight modifications) a
the notation “” means “is distributed according tal’x y mixing (dependen'F) process_[16], [17.]' O.f these modes, we

denotes the (joint) measure or distribution governing rando%q\?\lll.tﬁf:J gttre]nerally mtereste_d mfthe pomtzwse and m.s. "‘.‘(;’des-
variables X and Y, and px y denotes the corresponding 'thin the same regression framework, we now consider a

density! Random variables (r.v’s) and processes are generalﬂ@rt'cul""rl.v"":."”mt offtahelwrs\gljglgnzr?d RtEFI:I andhshow that it is
capitalized, whereas their realizations are indicated by tReIeneralization ot the when the two share a common

corresponding lowercase, e.dl,, is the training set r.v., gf‘d'a: kelrrtl_el (up to 'TIl constt;mt scahl?gif_a(t:t_ort). Tol ?."OW a
whereast,, is a sample realization df,. irect relation, we will use the so-callegtrict interpolation

Assume that we are given a jointly random, discrete-tin@l) clasg of regl_JIarl_zed RI.SFN,S’ where, as with the NWRE’
process{(Z(i), Y (i) € R x R, i = 1. 2, ---} ~ Py v (i one .baS|s function is assigned to eaph input datum in the
with a sufficiently “smooth,” time-invariant regression funciraining set. Note that when regulanzatlon Is present, the term
tion “strict interpolation” refers to this one-to-one correspondence

between basis functions (arentre3 and the training input
#(2) A E[Y(5)|Z(i) = 2]: R¢ — R, i=1,2,. data and should not be taken to mean that the network is
trained to generate a function estimate that agrees exactly
1) with the training data. We shall generally omit the “SI”
designation for the regularized RBFN's used in the sequel,
except where necessary to emphasize some particular aspect
of the SI construction.

Recall that for a regularized RBFN designed to solve the

least-squares interpolation problem over a random saffiple

random  process Wity egtimate off is given in general form by the linear
E[B(#)Z ()] = 0 for all <. Note such ary exists whenever the Jis g g y

so that
Y (@)= f(Z()) + B(4), 1i=12,.-- 2

where {B(:)} is a zero-mean

joint process{(Z(),Y (<))} is stationary, but the existenceeXpalnSIon

of f does not imply the stationarity of the joint process. For f'n(.) 2 w) g, () (6)

a trivial example, takez(i) ~ N(0,07) to be a (generally)

nonstationary Gaussian process, a¥ig:) 2 aZ(i) + b; where

clearly, f(z) = az + b independent of. On the other hand, g, () 2 [9;(Ni=1 (7)

if f is time varying, then it is clear that the joint process A .

is necessarily nonstationary. We shall have more to say on 9;¢) = K([-=Z()llw,) (8)
these matters further on. {Z(j)}7_, are the centres of the expansion, and the notation

The general structure of a kernel regression estimate (KR|I1:_) |‘|U indicates the Euclidean norm ¢ weighted by a
/! of f based on a random samglg 2 {(Z(5),Y (i)}, ~ symmetric positive definite matri,,. The linear weightso,,

are then determined as the solution to
LAll densities in this paper are taken with respect to Lebesgue measure
unless otherwise specified. (Gn + X\ Dw, =Y, 9)
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where on the basis of a realized training ggtfor all inputsz. As
T(7(1 will be explained further on, the generalization does not affect
9, (Z(1))
q A , 10 the overall tenor of the results. In the theorem and proofs,
n . : (10) the related concept of thBarzen window (density) estimate
g, (Z(n)) (PWE) [20] also plays a central role.
is the symmetric, positive definiiaterpolation matrixand Theorem 1:Assume thaf{Z(¢)} has a stationary marginal
measurel” and densityp. Let D be a compact subset &
Y, 2 Y ()5, (11) with p(2) >0 for all z € D. Given an NWREf], with kernel

) ) ) _ K’and supremun® = sup, -z« K'(z), defineg), asg,, in (8)
is the vector of desired outputs targetsfor the interpolation ,.ih k7 in place of K and the associated PWE: R? — R+
problem. The{)\, € Rt} is a sequence ofegularization AT

parameters that in the deterministic case, trades off the fideﬁ];/t.he input density ash;,p,,(2) n9n(z), 2 € RY, wher_e
of the resultant interpolation over the sample data with thée N aconsf[ant vector of ones. Then, we have the fqllowmg.
smoothness of the estimatgy,. From a deterministic point 1) If [Y(9)[ <M almost surely (a.s.) for all and if K7,
of view, the estimate (6) is optimal in the sense that it is  1/»}, andp are such that

the unique solution of the associated regularized variational

_ _ =0 (15)
interpolation problem

sup [pn(2) — p(2)|
zeED
thendN = N(p, D, K’, {h,}) such that for any» > N
and o> max (2, log (2C/(h¢m))/logn), a regularized
RBFN f, - € F, may be constructed such that
fu(z)]
= O(C*Mn="h;*¢m™?)

f = argmin
fes

N
<Z(y(i) — f(2(i)? + A||Df||§> (12)

i=1

. . ., . sup |fn.eo(2) —
S suitable space of “smooth” functions; zED

D (pseudo) differential operator ove;

[|-]l2 L2 norm.
It is the choice ofD that determines the kernél for the
regularized RBFN. For example, Gaussian kernels of the form2)
K(r) = exp(—r?/2) correspond to operator® defined by
an infinite series of exponentially weighted iterated Laplacians
with increasing order and oriented according to the input norm
weighting matrixU,,. R

In this sense, the estimatg constructed above is the
“smoothest” function consistent (up to the regularization pa-

n—oo

— 0a.s.fr, (16)

wherem = m(D) 2 inf.ep p(2).
If E[Y2(i)]<M? for all < and if K’, {h,}, andp are
such that

sup Ex,, [|pn(2) — p(2)]’] "=70 17

zeED

and there exists positive constarts, R, R3, andv
such that

rameter \) with the training data. For more details on the lim Sup(lfnoo(Z)I + |f’ (2)|) < Ria.s.Pr (18)
deterministic RBF interpolation problem, see [18]. nooozep " "
To compare the two estimator structures, we may rewrite ) pii (%, Y)
the NWRE general form as Jim it oY) <R, (19)
& a
PO =wI0Y, 13) i
lim inf n"nh,p(z) > Rs>0a.s.-Pr, (20)

/ n—oo z€h
whereW . () 2 [Wh,;(-)]7—,. Moreover, by substituting (9) - _ N _
into (6), the RBFN can be expressed as wherep;;(-,-): R x R* — R™ is the joint density for

Z(i) andZ(j), thendN = N(p, D, K', {h,}) such that

Fa() 2 gL (NG + D) 7YY

thus showing that the RBFN is a KRE-type method with an
effectiveweighting functionW () £ g7 (:)(G, + AD)~".

(14)

for n> N and « > max (1,v,log (2C/(him))/logn),
a regularized RBFNf, . € F, may be constructed
such that

The similarity of the RBFN weighting function to that of the sup Ex, (| fn,c0(2) = £1(2)]7]
NWRE suggests that the two should be parametrically related =eh ) D oy o\ oo
(an intuition that is largely correct), as we shall see. We should =0 M\/z||P||2||K||2” hym™%) =70

mention that while there has been previous work relating (22)
RBFN'’s to the NWRE [19], that work considered only nor- A
malized, nonregularized RBFN’s in which the parameters are ~ Wherem is as before, and = L(D) = sup,cp p(2).
explicitly chosen to approximate the form of a corresponding Proof: See Appendix A. O
KRE. As an aside, we may find in the literature numerous sets of
Let us define a special clads, of regularized RBFN'’s in conditions under which (15) and (17) hold. In particular, we
which \,, (and hencew,,) is permitted to vary with its input refer to Lemma 2.1, Theorem 2.2, and Corollary 2.2 in the
z € R, This class is a slight generalization of the usual classise of (15), and Theorem 2.1 and Corollary 2.1 in the case of

of regularized RBFN's in which,, (and hencaw,,) is set once (17), all from [17]. For the purposes of this paper, it suffices to
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mention that the conditions include the case where the inghe risk converges (im) to the m.s. value of th@rediction

process{Z(i)} is dependent, i.e., correlated, according to error €,(n + 1) defined as

mixing condition [21], [22]. The forms of mixing allowed in

the cited theorems [2- in the case of (17) and the stronger en(n+1) £ Y(n+1)— ?(n +1). (25)

geometrically strong mixing (GSM) the case of (15)] are less

restrictive than other types of mixing conditions commonlyVith a view to the speech prediction experiments, we shall

assumed, e.g¢ and p-mixing, and include classical ARMA restrict our attention to the specific case of a Markovian

as well as i.i.d. processes. nonlinear autoregressive (NLARJrocess{ X (i)} of orderp
From the construction of the approximating RBFN detaileand delayk, i.e.,

in the proof of Theorem 1, we see that for sufficiently

large training sets, the NWRE corresponds to a (specially) X (¢) = f(X,(¢ — k)) + B(%), 1=1,2,.-- (26)

regularized RBFN for which\,, "= oo at an appropriate

rate. From the RLSF theory, however, we know that bfpr & > 1, where X, (i) 2 [X(),X(E-1), - X(t—p+

choosing the regularization parameter sequefidg} via 1)]', and {B(i)} is an i.i.d. noise process with zero mean,

an asymptotically optimal (a.o.procedure, the resultant se-bounded variance? and independent of the initial state vector

quence of regularized RBFN's has an asymptotek (as x, £ X, (—k). Thus, we have an instance of the general

defined below) which is minimum over all possible choiceggression case with' (1) = X (i) and Z(i) = X (i — k) or,

of regularization parameter sequences, including the ones V\g@miva|ent|y,y(i) = X(i+ k) and Z(i) = X (i) (we shall

A, =" oo present in the familyF, and (by approximation) yse either notations as convenient). Note thatifes 1, the

the NWRE. If we can then determine conditions under whiGfector input proces§ X, (¢)} satisfies a similar recurrence
this “risk” converges (inn) to the desired global m.s.e.,

then by comparison, the regularized RBFN constructed with X,(0) = [f(Xp(i = 1)), X —1),X(i —2),---
an a.o.-se_lected regularization parame_ter sequence sh_ould be X(i—p+ )] +e(i)er

m.s. consistent whenever the NWRE is. Indeed, this line of
reasoning is pursued in the next section, where we prove
the m.s. consistency of the plug-in predictor formed from
the regularized RBFN for a Markovian NLAR time seriesvhere e; 2 [1,0,---,0]" is the first unit vector inR?.
generated by an i.i.d. noise process. Discussion of other more general processes, e.g., the case
where{B()} is a heteroskedastic (but still zero mean) noise
process, can be found in [23]. For genefalthe vector input
process{X,(¢)} is clearly

a) dependent (by the autoregressive construction);
b) nonstationary (by the action df).

§a(is A) 2 F(2(0) — Fulz(d),An),  i=1,2,--- (22) To deal with these issues, we may impose conditiong and
the measure’s for {B(:)} such that
a) the dependence follows a mixing condition admissible
~ Al ~ under Theorem 1;
Ly(Anstn) = . Zﬁi(i, An) (23)  b) {X,(:)} is “asymptotically stationary” in a sense to be
i=1 explained below.

1173

T(X,(i — 1)) + e(i)es (27)

I1l. PREDICTION USING REGULARIZED RBFNS

Define theapproximation errorfor a regularized RBFN,,
at time stepi as

the loss of fn with respect to its training set, as

and therisk as A sulfficient set of conditions that meets both requirements for
k = 1 follow.

Al) {B(i)} satisfiesE[|B(4)]] <> and has an every-
where continuous and positive density with respect
to Lebesgue measure.

A.2) f is bounded and Lipschitz iR?, has f(0) = 0 (so
that 7(0) = 0), and isexponentially asymptotically

Ra(An) 2 Eq, [Ln(Ae, T)] (24)

where we have indicated explicitly the dependencef,@f
(henceg,, andL,,) on the chosen regularization parameter
this dependence will be omitted when it is clear from context.
The main result that we shall exploit from RLSF theory is . i v
that the “optimal” regularization paramet&f, that minimizes stable in the largei.e., 34, ¢>0 such thatvn € Z
the risk lies between zero and infinity, except in certain and x(0) GARP’ lz(n)l| < Aexp(—en)||z(0)]l,
pathological cases [11], [23]. While this conclusion has some wherez(n) = T"(x(0)) is the n-fold composition
bearing on the quality of thglobal estimatef,, of f, we of 1" applied toz(0).
are more interested in the corresponding implications for theQf the two conditions, the second is obviously the more
(pointwise) plug-in predictorformed from the estimate of restrictive one because it requires that the underlying mapping
asY(n+1) = f.(Z(n+1)). In particular, we can show that f satisfy a rather strong contractivity condition (although it
2R . . _ o dé)es allow the stable point of the m&p to be other than
eference [11] gives this result for the usual case of the input-condition

version of the risk, whereas [23] extends this result to the (unconditional) ri by_ applying a SUitab_le tranSIation)_- Exponential_ decay in
defined above. transiently driven physical systems is quite plausible, how-
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ever, which implies that the exponentially asymptotic stability b) that the m.s. consistency of such an a.o.-trained RBFN

condition may hold at least locally within a given time follows from that of the correspondifdNWRE when-
series. ever conditions admit the approximation results of The-
Under these chosen conditions, it can be shownkifer 1 orem 1.
that the vector input proces¥ (%)} 2 {X,p(@)}is On the latter point, we note that if the initial state r.v.
a) geometricallyg-mixing (GPM)[16], hence, GSM (since 4(0) is a.s. bounded in norm by a constafit then the an
$-mixing implies c-mixing); appropriate compact set for the application of Theorem 1 is

b) geometrically ergodici.e., the sequence of marginal? = {z € R": |[[z]| < A - R}, where A is as defined in
measures| Pz} converges at geometric rate (in tota-2. Furthermore, it is not difficult to see that Theorem 1 also
variation norni ||- ||y asé — o) to a common measure holds for geometrically ergodic input processes by replacing
Py [21], [24]. the common measur®, densityp, and joint densitieg;; in

he fi imolies that the d q gle proofs with the invariant measure densityp.., and joint
The first consequence implies that the dependence create éﬂsitieq%ij, respectively (e.g., see the discussion regarding

(26) is compatible with the mixing conditions supported inyiiise convergence of the marginal input densities to the
Theorem 1, whereas the second consequence essentlallysfar{}%ﬁiant density in the proof of Theorem 2). Therefore

that the marginal input measures (and densities) for the r. Seorem 1 remains valid under our chosen NLAR process
X () approach a common (stationary) measure geometric nditions

fast as: increases. We should mention that we have cho:senBy the argument stated at the end of Section II, Theorem
this rather weak form of nonstationarity primarily to simplifyl (with the indicated modifications) and Theorem 2 allow us

the exposition; other conditions can be chosen to PEMY conclude that the regularized RBFN predictor is m.s. con-

stronger forms of nonstationarity [23]. The main point to bgistent for the NLAR processes considered. While the NWRE
demonstrated here is that with these selected conditions, Edictor is also consistent. we know from the discussion of

NWRE_|s an approprl_ate, i.e., consistent, predictor that can gymptotic optimality at the end of Section Il that only the
appromm_ated according to the Theorem 1. - regularized RBFN has the flexibility of selecting a sequence
Rgturnmg to the analysis of the m.s. 'pred|c.t|on error fo{r)\n} that yields near-minimal risk onceis sufficiently large;
(26) in the caseés = 1, elementary expansions yield the NWRE, with its effectively unbounded regularization
parameter sequence, will generally have greater asymptotic

2

Elen(n +1)] B risk and, hence, m.s. prediction error. We should add that
=E[f(Z(n+ 1))+ B(n+1)— f(Z(n+1))|] although the particular NLAR process conditions we have
=E[|f(Z(n+1)) - f(Z(n + 1)) chosen are somewhat restrictive, they do allow the use of the

< generalized cross-validation (GC\frocedure for calculating
+2E[B(n + D{f(Z(n+ 1) = f&(n+ DI +"  Gich an ao. sequence of regularization parameters [12]. It
2 E[62(n+1)] + o can be shown that the regularization parameter sequence
produced by the GCV procedure is invariant to rotations
where the cross-term in the second line vanishes by the indé-the data axes in (2). Under the more general condition
pendence oB(n+1) from {B(¢)}7_,, and hence{Z(¢)}_,. of independent but heteroskedasti:), only the leave-out-
Clearly, it is sufficient to relate the risk of,, to its m.s. oneor ordinary cross-validation (OCVjprocedure is currently
approximation error at time step + 1, as we do in the known to guarantee a.o. estimates of the true risk-minimizing
following. regularization parameter sequengE:} [25], [26], but this
Theorem 2: Assume that conditions A.1) and A.2) holdprocedure does not share the rotational invariance property of
If, in addition, a) the density of the stationary measure faghe GCV procedure.
{Z(%)} is bounded and b) the sequence of estima{gts is
uniformly bounded a.sPr, with a correspondingly bounded

. . IV. RECURSIVE UPDATING FOR
sequence of Lipschitz constants, then

REGULARIZED RBFN RREDICTORS

IE[62(n + 1)] - R,,(S\,,)|"_—>)°°0a.s.-PT ) (28) As there is no substantial difficulty in doing so, we shall,
" o where possible, develop the subsequent algorithms for a gen-
Proof: See Appendix B. o eral pair of input/output processd¥ (<), Y (¢)} rather than
The ramifications of this result are two fold: specifically for the autoregressive casdi) = X(i) and

a) that RBFN training procedures aimed at minimizind(¢) 2 X, (i—1). Thus far, both the NWRE and regularized
(asymptotically) the risk, such as the a.o. paramet®BFN assume that the process to be predicted admits a
selection methods for the regularization parametéime-invariant regression function; in practice, as our speech
sequence described earlier, are also sensible frompradiction experiment will show, this condition does not al-
m.m.s.e. prediction point-of-view; ways hold. If the regression functighdrifts slowly with time

4By “corresponding NWRE,” we mean the NWRE trained with the same

s - , . y ponding ,

The total variation nornj| - ||y for tge spaceC of probability measures a¢5"and sharing the same kernel (up to a constant scaling factor) and
over B(R*) is defined ag|P — Q|lv = supyep ®ey [P(B) — Q(B)|,  bandwidth sequence as a given RBFN; see the proof of Lemma 1 in Appendix
whereP, Q € L. A.
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TABLE | In the first stage, we allow the size of the RBFN to grow
NWRE Basic FixED-SiZE PREDICTION UPDATE ALGORITHM with incoming data so that one weight is added per update,
Initialization: assume the NWRE has been gencrated from #,,(i) in the usual way, i.e., via equa- Iead_ing to anaggmgntemet\_/vork with _inﬁnite memory(Cf'
tions (3) and (4) with ta(i) in place of T, for linear adaptive filters, this growth is usually callecder
Updating: when the now datum ((i + 1),y(i + 1)) becomes available, recursion [e.g., see [27, ch. 15])]. The second stage is to
L. replace the basis function K (& — 2(i —n + DIl /) with K (s = 2{i + 1)]| /hn) in (3). simultaneously add one (new) weight and truncate the oldest
2. replace the corresponding prediction target y(i —n + 1) with y(: + 1} in (3). Weight per update, Ieading to a network twfed SiZGWith
Prediction: for the NLAR case y(i) 2 (i) and 2(i) 2 @,(i — 1), set §(6+2) = Fazr1 (@pli + 1)). finite memory
Iteration: ¢ =4+ 1 and repeat from Updating siep- This idea of augmenting a RBFN with incoming data was

previously introduced in [28] and later in [9]. Compared with
the latter work, our approach is developed as an optimal

indexi asf;, i.e., exhibits a form ofocal stationarity the idea recursive solution to a local interpolation problem and is
of updating the regression function parameters periodicalthus solidly grounded in the theory of RLSF, which deals
say, every!l time steps, as new data arrive is intuitivelywith noise in principled and explicit fashion. In contrast, the
appealing, particularly when it can be perfornedficientlyina sequential function estimation (s.f.e.) approach of the latter
recursivefashion. The basis of comparison will be the standasglork assumes that the training data are noise-free, which
adaptive linear estimation procedures such as the recursiigy not be realistic in many applications. To ameliorate the
least-squares (RLS) algorithm. Let us consider the limitingfluence of noise and to limit the network growth with their
casel = 1 and assume for now that, which is the size of s.f.e. approach, the latter work then proposes a growth criterion
the training set and, hence, the number of basis functionspgased on Hilbert function space geometry according to both
the estimate forf;, is fixed. Before continuing, let us set theprediction error and distance criteria. While such criteria may
notations for the following discussion. be intuitively appealing, no theoretical guidance is provided on

Subscripts: For vectorand (square)natrix quantities the the proper selection of the criteria parameters, nor are the con-
first subscriptrefers to itsdimension whereas for ascalar ditions required for their effective application characterized.
quantity, it refers to the dimension of the associated vect®y building on the significant body of knowledge surrounding
or matrix quantity being indexed. Theecond subscriptif RLSF and KRE for time series estimation, we are able to
present, refers teither the time indexof the training set from provide analyses of our algorithmic choices and their effect
which the quantity is constructed (in the case adcalar or on prediction performance.
vector functiof or a particular elementof that quantity (in
the case of amrdinary vecto}. If a vector quantity’s second
subscript consists of the notatiarmb, then we are referring to
the subvector formed from theth element to théth element ~ We begin by decomposing ti{e+1)x (n+1) regularized SI
inclusive. equation for thecombinedrealized training set,,1(¢ +1) =

Parenthesized Arguments:For nonfunctional quantitiesa  tn(é) U tn(i + 1) as

parenthesized argument indicatésie dependencd.e., (¢) p g
mean quantity uses data up to and including time stefFor <[ Gn(i) (it 1)} + [ASQ) : + . )
n—l—l

A. Augmented (Infinite Memory) Case

Ty7s
functions, it indicates the usual argument. Yo (i +1) . £(0) )
As an examplet,, (i) £ {(2(5), ¥(4))Y=i_n 41 denotes the ) <[w%(l)} + { Aw( L) . D [ yn([’)l }
realized training set for the network at time stgpwvhere in Wht1,n1 (4 + y(i+
the NLAR case, this training set is formed from the time series (29)

segmentiz(j)}i_;_,,—,41- Then,g, ;(-) corresponds tg(-) . .
in (8), andw,_;(4) corresponds to thgth element ofw in (9) Which we may write more compactly as
whent,(¢) is used in place ot,,. Fo(i) y G+ 1)

Givent,, (i), which is a realized set of input/output examples |:,YT(2+ 1) K(0) J:’)\ o 1)}
for f;, andf, ;, which is the corresponding regression function " "

estimate, the problem is to recursively compyiig 1, which . q(wno(i)} " [ Awn('{) ' D - [ ?{n(i)l }
is the estimate associated with(i + 1), from f,, ;. For the W 1,n1 (1 + ). y(i+1)
NWRE, this network updating and subsequent prediction are £nt1(i +1) - wn1(t +1) =9, (1 +1) (30)

simple, as shown in Table I. If we are using some data-based A

method of selecting the bandwidth, it may also be advantahere F,.(i) = Gn(i) + A,(), and -y, (¢) is the vector

geous to adjust the bandwidth froly, = h,,(4) to h, (i +1) formed from the fgstn elements of the last column of

at the same time. The basic order of the updating, excludifg.+1(¢), i-€.,7,(¢) = [g, ,;(2(i))]:.» (the notationi:j means

the cost of computing an updated bandwidth parameter, for thelices ¢ to j inclusive). Here, as a slight generalization,

NWRE is O(1), and that of computing the predictigri: +1) A, (%) 2 diag(\,(i — 7),7 = n—1,n—2,---,0) is the

is O(n). diagonal weighting matrix formed from the most recent
For the regularized RBFN, we shall analyze the effecegularization parameters up to and including time stepet

of the one-step updating in two stages and thereby fimg,(¢) be the previously computed solution to the regularized

interesting parallels to the standard RLS estimation algorithi®l equation(G,,(¢) + A, (i))w, (i) = y,,(¢) over t,(i). We
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TABLE I function being estimated is not significantly time varying. If
ReGuULARIZED RBFN AUGMENTED PREDICTION UPDATE ALGORITHM the ratio is nonconvergent, it may be an indication that old
T _ N _ training samples are no longer representative of the regression

Initialization: assume the regularized RBFN has been generated from ¢,(i) in the usual way, i.c., R R . . R . R

via cquations (6) to (9) with ta(i) in place of Ty, and assume that Fy (i) is known. function behavior currently being estimated. For this situation,
Updating: when the new datum (=(i + 1), (i + 1)) bocomes available, the effectivememoryof the RBFN can be limited by fixing

1. select the new regularization parameter An41(i + 1) and the norm weighting matrix its size ton Weights/basis functions Computed from the most

U,1{i + 1), typically from tn.y (i 4+ 1). .. . .
2. compute the new basis function vector -y, (s + 1. recentn training data available, which leads us to the second

. compute (Fn(z) - litﬁ??;?h )71. Note the complexity of this calculation may be Stage Of updatlng deSCrlbed neXt

reduced to O (n?) if F;;1(i) is optionally propagated from time step to time step as in-
dicated below, since the Sherman-Woodbury-Morrison formula [40] (or matriz inversion

lemma in the statistical signal processing ficld [27]) for the inverse of the sum of a given B . F|Xed-S|Ze (F]n |te Memory) Case

matrix and a low rank perturbation may be applied.

s

4. compute the weight change vector Awn (i) according to (32). Let us return to the original task and assume that the size

ey e e of the RBFN is fixed ak weights/basis functions. The desire

. compute the new wei n+1n+1(2 via . . . . . . .

7. add the new basis function K (|ls — 2(i + Dy, , ;1)) With weight wn1 i+ 1) to is to re_Iatewn(z + 1),.wh|ch are the weights satlsfylng the
the network regularized S| equation over, (i + 1), to the previously

<3

. (optional) compute F;ll(’l, +1) from F; (s} with complexity O (n?) via a partitioned
matrix inverse formula applied to the decompasition (30).

computed weightsw,,(¢), which do the same far, (7). Before
we do so, let us establish the notations. Decompose the
regularized Sl equation for the previous training §gt) as

Pn(i —n+1)+K(©0) Bri(i) } { w1 (4) }

Prediction: for the NLAR case y(1) & (1) and z(i) 2 zg(i—1), set T(i42) = fN,L“JH (z4lz + 1)).

Iteration: i -4+ 1, n = n+ 1 and repeat from Updating step.

Br-1(?) Fr1(i) | [wn,2:n(0)
assume that the new regularization paramgigr,; (i + 1) has y(i—n+1)
been chosen on the basis©f, (¢ + 1). The objective is to = { Ypo 20n () }
find the new weightw, +1 ,+1(¢ + 1) and the weight change Fo(i) - wn(i) = u, (i) 33)

vectorAw,(¢) to be applied taw, (i) such that theugmented
regularized Sl equation (29) is satisfied. The solution is  whereg,, () is the vector of the last — 1 elements of the
first column of the previous interpolation mata®,,(7), i.e.,

B, 1) = [ 1,i(2(2 = n+1))]2.n. This time, the objective is
(31) to find Awn,zn( ) andw,, (¢ + 1) satisfying

wn—l—l,n-l—l(i + 1)
y(i +1) — (wa(6) + Awn (3) Ty, (i + 1)
Anpr(i +1) + K(0)

[ Fa) iy ]
N, (i) Y(i+1) A+ 1)+ K(0)
B P A (e Vo (e VA (o] 4 [Awnzn@®]) _ [t
_ <F~(y)< 517 o) Fn@(L) -Own<j++1>[:";(<iill)>}.> ) (34)

i+ 1) —w, (), +1)).
(Wi +1) —wa (D7, +1)) In other words, the new weight vector for the updated network
(32) can be considered the result of

i) shifting the lastn — 1 weights in the old weight vector
w,, () which are associated with the most recent 1
data int,(i) upwards into positions 1 te — 1 and
setting thenth element to zero;

i) adding a perturbatiom\w,, ».,(%) to the shifted vector

iif) adding a new weightw,, (¢ + 1) in the nth position.

It is not difficult to show that the resultant update
equations become

A1 (i + 1) + K(0)

The resultant prediction update algorithm is listed in Table II.
Becausey, (i 4+ 1) is also the vector of basis function outputs
of the previous network from time step in response to
the newly available inputz(¢ + 1), we see that the new
weight wy,1.,41(¢ + 1) is merely a scaled version of the
a posteriori estimation error, i.e., the estimation error that
would have been obtained had the previous weight vector
wy(¢) been updated taw,(¢) + Aw,(i). In contrast, the

weight change vectoAw, (i) is proportional to thea priori wp (6 + 1)

estimation error, i.e., the actual estimation error using the Y(i41) = (Wn 200 () + Awy 20 (1)) Ty, 1 (i + 1)
previous weight vectomw,,(¢) prior to any updating, which is = M+ 1)+ K (0)

similar to what occurs in the RLS algorithm. This partitioning (35)

of roles betweenuv, 1 »41(¢ + 1) and Aw,(¢) is intuitively )
satisfying; the chang&w, (i) applied to the existing weight Aw,2:n (1)

vector attempts to account for estimation error incurred by N R (e S LA (S B -

he existi dated k, wh h igh = (Fo-a() - :

the existing (nonupdated) network, whereas the new weight (i + 1) + K(0)
elementw, 41 ,,+1(i+1) attempts to account for the estimation N (A4 1)

error remaining after the existing network has been updated. |:wn,1 1(8) — \ (Z.”:l) T K(0)
Analogous to the RLS algorithm, we may also expect the "

ratio of the m.sa priori and the m.sa posteriori estimation i+ 1) —w,) w5 (D), (i + 1))} (36)
errors to converge to unity a8 — oo if the regression
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TABLE 1l

ReGULARIZED RBFN FXED-SizE PREDICTION UPDATE ALGORITHM

Initialization: assumec the regularized RBFN has been generated from #,(i) in the usual way, i.c.,
via cquations (6) to (9) with t,(i) in place of Ty, and assume that F*, (i) is known.

Updating: when the new datnm (z(i + 1), y(i 4 1)) becomes available,

&)

w

@ oo

© =

o

. select the new regularization parameter A,(i+1) and the norm weighting matrix U, (i+

1), typically from £,(i + 1).

. compute the new basis function vector 4, . (i + 1).

Yo 2 Gy (L)

1
. compute (F,,,](i) - W) . Complexity can be reduced to O (n?) if

F;fl(i) is optionally propagated from time stcp to time step as in step 3 of the Updating
pracedure in Table 2.

. compute the shifted weight change veclor Awy 2:0(1) according to (36).
. compute the new weight wy, (2 + 1} via (36).

. delete the basis function K (e — z(i —n + l)”)un(z)) and its weight wy ) associated

with the oldest data in ¢,(z) from the network.

. add the shifted weight change vector Aw, (i) to the remaining n — 1 network weights.

. add the new basis function K (H- —z(i+ 1)\\[,“(”1)) with weight wn (2 + 1) to the

network

. (optional) compute F,'(i + 1) from F;ll(z) with complexity @ (n?) via a partitioned

matrix inverse formula applied to the decomposition (33). Hence compute F 1, (i +1)
with complexity O (n?) via

Fl 1) = (T = ho i+ DTG+ D) Hani+) (51

where h;, 1(2+1} is the vector formed from the last n—1 elements of the first column of

input/output processes are nonstationary, although it has now
been established that this notion is, in fact, generally incorrect
[29]. In this respect, the fixed-size regularized RBFN is
somewhat more explicit in the way it deals with nonstation-
arity.

With both the augmented and fixed-size update algorithms,
their computational efficiency is derived from the low rank of
the perturbation applied to the existing interpolation matrix
at a given time step through augmentation and addition,
respectively. Exploiting the matrix inversion lemma can then
reduce the update complexity @(n?) (for n basis functions)
per time step. As may be expected, the experimental results for
speech prediction show that thepartial update algorithms
can result in loss of tracking and degraded performance
compared with afull update algorithm in which the the
bandwidth and/or regularization parameter is updatedafor
entries of the regularized interpolation matd#,(:) and not
just those involving the new basis function vectgrgi+1) (in
the case of the augmented updates)qnd, (i+1) (in the case

FY(i+1) and H,_i(i+1) is the lower right (n — 1) x {(n— 1) submatrix of F;'(i +1).

of the fixed-size updates). The update complexity per time step
in this full update case is naturally greatert»®) compared

with the partial update case. Nevertheless, the recursive update
algorithms for both cases provide useful insight into the
essential character and operation of the dynamic regularized
RBFN as a time series estimator.

Prediction: for the NLAR case y(z) 2 (i) and z(¢} 2 zy4{i— 1), set Z(i+2) = fn_iﬂ (mg(i + 1)).

Iteration: 1 -+ 4 + 1 and repeat from Updating step.

Except for the additional termw, 1(i)8,_,(¢) in (36), the
forms of the update equations for this fixed-size case are
identical to those for the augmented case. The additional term
can be regarded as embodying the effect of weight vector
augmentation from size to n 4+ 1 followed by truncation

to the weights computed from the most recerttaining data.

We summarize the prediction update algorithm for the fixe
size case in Table Ill. Note that the formula (81) in updatin?1

step 9 follows the identity in (37), shown at the bottom g

the page. _ such as CELP [30] has been met with surprising success.

Although the parallels between the recursive update @t .o rse, these results are achieved after significant prior
gorithms described here and those in the RLS algorithif,ledge regarding the characteristics of human speech have
are interesting in their own right, we must be careful NGfeen carefully embedded into the corresponding methods
to conclude that the algorithms presented are merely §%- reglize maximum performance. In contrast, we should
pressions of the RLS algorithm after a nonlinear mappingmphasize that our interest in speech as the test signal for
z(1) € R? — g,; 1(2(i)) € R". We can see this dif- \he proposed algorithms is limited to the characterization
ference clearly in the fact that infinite memory regularizegs the gains possible from nonlinear and nonstationary pro-
RBFN'’s require an infinite number of weights/basis fun%essing and should not be taken to imply that the pro-
tions; fixed-size regularized RBFN's can only have a finitgosed predictors (in their current form) are either practical
memory of the same size. This condition stands in contrast optimally tuned for actual speech prediction applications
to the situation with the RLS filter where a fixed numbegych as speech coding. Further, speech-specific research and
of weights are updated to reflect all the past history of th&aluation would clearly be necessary to reach that state.
input data. Of course, the exponentially weighted variamhat said, the results of the following experiments in which
of the RLS algorithm is commonly used in practice, andoth the partial and full update algorithms for the fixed-size
we can argue that its memory is, for all practical purposesetwork case are evaluated (albeit with different motivations)
limited. Indeed, the introduction of the exponentially weightedo offer evidence of the performance gains possible when
variant of the RLS algorithm was motivated by the heuristithe nonlinearity and nonstationarity of speech signals are
that decaying memory would improve estimation when theddressed.

V. APPLICATION TO SPEECH PREDICTION

For a benchmark problem with real-world data, we turn
(io speech prediction. That the human speech signal is gen-
rally nonlinear and nonstationary is well-known; even so,
e linear prediction of speech witinalytic methods such as
he LMS/RLS/Kalman algorithms [27] anglyntheticmethods

Mli—n+2)+ K(0) BlG+DF2(i+1)

1 o'
[ B,(i+1) 1 (37)

o rilien] =]
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A. Experiment 1. Partial Update Algorithm 0.5 , T . . ; .
for Fixed-Sized Networks

We begin by giving some results for the fixed-sized update
algorithm of Table IlI. At this stage of development, we focusg
our attention on the practical issues of predictor tracking
stability and performance versus the fixed-size full update -05f ]
algorithm.

1) Description of Speech DatatWe use a 10000-point p ‘ \ . . . ‘ ,
speech sample of a male voice recorded at 8 kHz and ¢ 100 200 300 400 500 600 700 800 900 1000
8 b/sample while speaking the sentence fragment “When ", tme step
recording audio data...” The speech data, which appear
to have no discernible noise, are approximately zero-mean
and normalized to unit total amplitude range. Applying the
Mann-Whitney rank-sum test as described in Section V-B1 0
rejects the null hypothesis that the speech sample is thgt
of a stationary linear process with a maximum samgle *
statistic of less than-13 (a Z statistic of less than-3 is
considered grounds for strong rejection), hence indicating a
high probability of nonlinearity in the speech sample. -1 . *

2) Approach Using Regularized RBFN’$n the main, we
follow same the approach as in the full-update case discussed ] 3 ) ] )
in Section V-B2, except for the following modifications. (ngiidl'is ;f;ﬁ';{"%:g’g ?; f)tritécicggg?_er) versus dynamic (lower) predictors

Input Order: A common input order of = 50 is used for
each network (unless otherwise indicated).

Regularization Parameter: For a given network, fixed for 7 and threshold parameterr) has occurred in either the
the duration of prediction over the input signal, i.,(i+1) = two-sided (RC.1) or one-sided (RC.2) prediction error. For
(@) for all 4. our experiment, we use reset condition (RC.1) with window

Update Algorithm: Except during reset (see the following),» = » = 100 and thresholds = 4 as there appears to
we follow Table I, where the updated norm weighting matri®e€ no substantial difference in performance compared with
Un(L) is computed according to the input data Covariané@ndition (RC.2). In the ideal case that prediction error is
formula described in the corresponding section below for tifeWhite Gaussian process, the choicerotorresponds to a
full update case. The updated norm weighting matrix, howevéa/ge deviation probability of approximately 0.0063%. Not
is applied only to the new basis functions in the updatdtnexpectedly, the actual reset rate in the experiment is quite
column+y, _, (i + 1) in (34) to maintain consistency with the@ bit greater due to heavy tails in the prediction error density.
usual Sl fitting relatiory,, (i +1) = G,,(i+1)w,(i+1), where These design decisions yield networks with moderate com-

#,.(i+1) is the estimate of,, (:+1) produced by the network Putational complexity and reasonable performance that suit the
at time stepi + 1. basic purpose of demonstrating the partial update algorithm for

Reset Algorithm: As can be seen, the partial updatindixed-size networks. Further optimization of the design choices
algorithm implies that the networks produced no longer exactfyith their concomitant increased computational load are no
solve the interpolation problem (12) [since with partial updatépubt possible but will not be pursued here.
the interpolation matrixG,(¢) is not identical to the one 3) Dynamic Updating and Regularization for Speech Pre-
specified by the interpolation problem ovgr(i)]. The ac- diction: Using Figs. 1 and 2, we can briefly argue for the
cumulation of these partial updates to the interpolation matdp¢actical utility of dynamic updating and regularization for
over many consecutive time steps can lead to a loss of trackRRgech prediction. In the former figure, we compare the initial
and instability. To counteract this problem, we monitor theredictions of a dynamic predictor trained according to the
prediction error, (i +1) of the dynamic network at each timepartial update algorithm (without reset) for @ = 100,
steps and resetthe network, i.e., restart the partial update = 0.01 fixed-size network with those from a static= 250,
algorithm from the initialization step 1 of Table Ill, when one* = 0.01 predictor whose network parameters are frozen

of two possible conditions, denoted (RC.1) and (RC.2), aféter the initial training. Not surprisingly, even with more
met: than twice the number of basis functions, the static predictor

quickly loses track of speech signal in transition from a
len(t + 1) — plen(4), m)| > ko(en (i), m) (RC.1) quickly to a slowly varying portion of the input signal, as
len (i + )| — p(|en(@)],m) > ko (|en(3)],m) (RC.2) shown in the figure. The dynamic predictor, however, is able
to adapt and maintain its prediction performance. Regarding
where for a sequencda(i)}, p(a(é),m) is the sample regularization, although RLSF theory implies that= 0 is
mean, ando(a(i),m) is the sample standard deviation ofn consistent choice when no noise is present, in practice,
{a(4)Yici_,mq1- Thus, a predictor reset occurs when aome regularization is necessary because the likelihood of a
probable large deviation (as set by téndow parameter singular/ill-conditioned interpolation matrik,,(¢) increases

05 T T T T T T T T

-05r

L

1 il 1
0 100 200 300 400 500 600 700 800 900 1000
n, time step

1 1 1
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n, time index

Fig. 2. Regularized versus nonregularized predictors; 100, p = 2 (solid
is actual, dashed is predicted for= 0.1, dash-dot is predicted for = 0.01).

amplitude

-0.5 B ]

3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450
time step |

Fig. 3. Partial update algorithm, fixed-size case with reset versus with
reset (solid is actual, dashed is predicted with reset, dash-dot is predi

without reset, star indicates reset point).

TABLE IV

PREDICTION PERFORMANCE OF FIXED-SIZE ALGORITHM
WITH PARTIAL UPDATE VERSUS FuLL UPDATE

RBF reg. % of pred. PSNR (dB)

parameter resets partial update | full update | partial — full
X = 0.001 0.94 14.37 14.73 Z0.36

A =0.0001 0.92 13.71 14.45 —0.74

A = 0.00001 0.87 13.91 1419 |7 -0.28

-0

2500 3000

3500

time step i

4000

4500

5000

Fig. 4. Reset points in second 2500 predicted points for partial update
algorithm, fixed-size case (solid is actual, dashed is predicted, stars indicate

reset positions).

updating compared with those using full updating varies from
a relatively minimal 0.28 dB for tha = 0.00001 predictor to

a more substantial 0.74 dB for the= 0.0001 predictor. From

a computational standpoint, the figures for the percentage of
%ints at which reset is triggered indicate that the partially
updated fixed-size dynamic predictor has only 1% of the
computational complexity of the corresponding fully updated

. - . . ﬁixed-size dynamic predictor. While this reset rate is two
as n increases. Empirically, this effect appears especial

pronounced for small values pfin which the predictor output
is more sensitive to individual inputs in the input vector. A
example of this phenomenon can be seen in Fig. 2, wh
we contrast the predictions for two partially updated (withou
reset) fixed-sized predictors, one of which is trained with a
fixed A = 0.1 and the other with a fixed = 0.01. Again, it is

ofders of magnitude larger than expected in the ideal case of
white Gaussian prediction errors, it still easily satisfies the
Basic distribution-free upper bound of 1/£66.25% implied

Yy the Chebyshev inequality, viz.

1

Prob{|e, (¢ + 1) — " (&, (8))| > ko™ (€,(2)) } < e

evident that sufficient regularization is useful from a numeric@here ,.*(-) and o*(-) are the true, i.e., distributional, mean
and standard deviation of a process
4) Comparison of Partial Update Algorithm with and With- Fig. 4 shows the points of reset for the = 0.001 par-
out Reset:Fig. 3 gives an example of the efficacy of the resefally updated fixed-size dynamic predictor from time steps
criterion (RC.1). After detecting a relatively large deviation i500-5000. It is interesting to note how in this segment the
the prediction error at the starred point (time step 3419), theedictor resets occur at points of a regime shift within the
partially updated fixed-size predictor with reset reinitializespeech sample. Because the performance/computational trade-
to avoid the obvious stability problem exhibited by the samsff between the two update techniques is influenced by several
predictor without reset. Since reset is triggered at approXactors such as the length of prediction, the speech segment
mately 1% of all prediction time steps for the= 0.001 case being predicted, etc., further characterization is necessary to
shown, the example shown is by no means isolated, althouglike more definitive statements; nonetheless, the results can
the magnitude of tracking loss displayed is among the largeégs considered encouraging.
6) Comparison to Previous WorkThe same speech signal
5) Comparison to Full Update AlgorithmUltimately, we was also used as part of two previous studies, both of which
would like to compare the performance of the fixed-sizare based ormipelined recurrent neural networks (PRNN’s)
dynamic network algorithm using partial updating and resédllowed by standard linear adaptive filters [31], [32]. PRNN’s
[according to RC.1)] to the same with full updating. As theepresent another method of modeling nonstationary dynam-
performance measure, we use the PSNR as described iésrbased on the use of explicit feedback between modular
the full update case in Section V-B.3. Table IV shows thatetwork elements, each of which is itself a (recurrent) neural
the overall performance loss for the networks using partinetwork. While considerably different in the details of their

point of view to combat instability.

observed for that case.
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architectures and training methods, they do share the common TABLE V
principle of continuously adapting their network parameters MALE SPEECH SAMPLE PARAMETERS
to minimize their squared prediction error and, thus, track TD | No. of samples | Sentence
H i it H i m130 20215 Type out three lists of orders.
nonstatlonary signal characteristics. Comparing our results in o o The fasdor b iriod The Toss s got done.
Table IV with those of [32, Table Ill], we see that even our mi32 | 25128 | The boss ran the show with a watchful cye.
H H H H m133 25129 The cup cracked and spilled its contents.
WorSt-performlng Case Of partlal updatlng ylelds a PSNR Of ml34 23260 Paste can cleanse the most dirty brass.
13.71 dB, which is 0.12 dB better than the best PSNR of m135 29073 The slang word for raw whiskey is booze.
. . . ml136 27746 It caught its hind paw in a rusty trap.
1359 dB “Sted In Table ” for a hyb”d eXtended RLS (ERLS)_ ml137 26724 The wharf could be seen at the farthest shore.
trained PRNN followed by a 12th-order RLS filter. To be m138 22435 | Feel the heat of the weak dying flame?
m13Y 20877 The tiny girl took off her hat.

fair, however, theO(n?) computational complexity of our

partial updating method witlh = 100 centers is most likely

somewhat greater than that of the ERLS PRNN with three TABLE VI

eight-input single-neuron modules used in [32]. On the other FEMALE SPEECH SAMPLES PARAMETERS

hand, their predictor has the benefit of an additional level of =~ ID_[No of samples [ Senfence

RLS linear prediction not (yet) present in our scheme, and their 520 21530 | The young kid jumped the rusty gae.

performance figures are reported using the variance rather than 152 25064 [ A salt pickle taste fine with ham.

mean-squared value of the prediction error, both which should 5T T i e b e

bias their results upwards compared with our PSNR figures ggg ;zggi giiecfiiio?ﬁf;h:i ;ur;l;ful —

(see the discussion in Section V-B3). Of course, it would be 57 32522 The spot on the blotter was made by green k.

premature to draw any substantial conclusions on the basis 0% 2020 ?;:C‘i";:rsxﬁfj zglzl“;f;:‘dzikhfozhim shirt.

of a single speech signal, which leads us to consider the more

comprehensive suite of longer, phonetically balanced male and

female speech signals in the next experiment. Over this testalysis [34] with a Mann—Whitney rank-sum test rejects the

suite, we shall also show the performance increase possibldl hypothesis that each speech sample is that of a stationary

from employing a similar final level of RLS linear predictionlinear process with a maximum samestatistic of less than
—13 in each case (& statistic of less than-3 is considered
grounds for strong rejection). This result indicates that signif-

B. Experiment 2: Full Update Algorithm icant benefit from nonlinear processing should be possible.

for Fixed-Size Networks 2) Approach Using Regularized RBFN'§he  particular

As we previously mentioned, our objective in this se2pproach taken is to treat each speech sample as a realization
of experiments is to demonstrate that even without signif a discrete-time Markov process of orderobeying (26).
icant tuning, the dynamic regularized RBFN can provide f0r one-step-ahead (1-SA) predictién= 1, we consider the
nontrivial improvement in prediction SNR over the standarémiting case of per time step updating, i.e= 1. Key design
LMS/RLS algorithm-based predictors. We also indicate tHigsues to consider are the following.
further improvement possible in exploiting the residual corre- Input Order: Preliminary experiments showed that for
lations between the predictions of several dynamic regularizéddiven speech sample, the prediction performance of the
RBFN's and the predicted, i.e., desired, speech signal by wdynamic regularized RBFN varied with the orgerdepending
of an additional stage of RLS estimation. on the local characteristics of the speech over which the

1) Description of Speech DataThe speech data to be pre-network was operating. For example, in the transition periods
dicted consist of samples from ten different male and td¥¢tween voiced, unvoiced, and silent segments, networks with
different female speakers, each reading a distinct phoneticayall p, €.9.,p = 10, were generally found to perform better
balanced sentence. In their original format, the continuotikan those with large, e.g.,p = 50. Conversely, within
speech signals were 16-b linear PCM and sampled at 16 k@iZgiven type of speech segment, the networks with larger
rate with 8 kHz bandwidth. These samples were subsequertljjended to be the better predictors. While techniques for
filtered by a third-order Butterworth filter with a cutoff fre-€stimating the order of NLAR processes have been recently
quency of 3.2 kHz, decimated to 8 kHz rate, and recenterBtPposed [35], for computational simplicity, three fixed-sized
to zero-mean. Both the original and final speech signals dretworks withp = 10, 30, and 50 are run in parallel for each
of high quality with little discernible background noise. Thépeech sample and, as we shall see later, linearly combined.
sentence samples and some of their key characteristics a8BFN Parameters: Based on some previous work [36],
discrete time series are summarized in Tables V and VI. &ach of the networks is chosen to have the following.
can be seen from these tables, the total length of a speechetwork size: A fixed-size ofn = 100 basis functions is
signal being tested varies from approximately 2.5-4 s. used. This fixed-size corresponds to the assumption that

Before beginning, it is useful to quantify the degree of non- a useful memory for the networks is 12.5 ms, which is
linearity in the speech samples, as this factor will ultimately the average length of the 5-20-ms window of stationarity
determine the gains possible in our approach. Using some softusually associated with speech.
ware for chaotic time series analysis developed by the chembasis function: The “smooth” [in the sense of satisfying
ical reactor engineering group at Delft University of Tech- (12)] Gaussian basis functidlf () = exp (—r2/2) is used.
nology in the Netherlands [33], the method of surrogate datanorm weighting matrix: Common to all basis functions is
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TABLE VI TABLE VIl
GCV CRITERION FUNCTION EVALUATION LIMITS OVERALL EXPERIMENTAL RESULTS FOR SPEECH
Network o [ 2 | 3 3 PrEDICTION, SAMPLES m130-m134 (AL PSNRIN dB)
1 50 | 0.0001 | 0.001 Network no. ml130 ml31 ml32 ml33 mi34
2 30 | 0.00001 | 0.01 [ 14.02 13.76 15.30 9.93 12.79
3 10 | 0.0001 | 0.01 2 14.91 13.83 15.53 9.91 12.51
3 14.04 13.49 15.24 1127 13.40
NL ave. 14.32 13.60 15.36 10.37 12.90
. . . . . . RLS 1176 177 14.58 10.85 11.83
a diagonal norm We'thmg mat”an(l) whose 'nverS?v_at (auto) (14,0.96) | (50,0.999) | (50,0.99) | (50,0.999) | (50, 0.999)
time stepi, is set top times the diagonal of the empirical (I;LL‘; (1165097@ (11560:9) (117(-)0988) (112[53:9) (113-3599)
covariance matrix for the input samples i (¢). This (39S 16.43 1558 773 5.4 531
particular form of the norm weighting matrix allows the (NL-+auto) | (1+6, 0.99) | (4+14, 0.999) | (1410, 0.99) | (346, 0.998) | (3+14, 0.999)

multidimensional network basis function to be decomposed

into a p-fold product of one-dimensional (1-D) (Gaussian) TABLE IX

kernels, each with bandwidth parameter equal to the vari- OVERALL EXPERIMENTAL RESULTS FOR SPEECH PREDICTION

ance of a particular window ovef, (i). In the 1-D i.i.d. ExawmpLE, SavPLES m135-m139 (AL PSNRIN DECIBELS)

density estimation setting, such a form of bandwidth has Netwerkno. | m1s5 m136 mi37 ml138 m139

been shown to be consistent in the sense [37]. ; };3; ﬁﬁf i?i; 12?3 i?;‘é

Regularization Parameter: For each of the three networks — 3% B2 on s S
(p = 10, 30, and 50), the regularization parameter for each time™ rLs 15.48 10.92 1324 |7 1248 134
step is selected as the value that minimizes the GCV criterion— el (16.099) | (10.099) | (0.099) | (30.0999) | (30.099)
function evaluated over 1000 logarithmically spaced points (L) (11,905959> (1£40-7959> (1»1 gig” <11»70-1919) (111 3339)
from AL t0 Anax for that network as given in Table VII. (NLtauto) | (146, 0.99) | (144, 0.99) | (246, 0.999) | (5+10, 0.999) | (1-+14, 0.969)

Since the speech signals are largely noise free, the upper bound

on X\, (i + 1) prevents undue over-regularization, whereas the ; f the d , K si , NLAR
lower bound is necessary to ensure the numerical nonsinguf§ftormance of the dynamic network since in our case,

ity of the regularized SI matrix at each time step. The sligfiech prediction(s) = (i +1) at time step Is for the first
differences in the evaluation limits account for the varyinra:e series poinbutsidethe window {z(5)};_; 4,1y Of
degrees of sensitivity of each network to these two conditiorf@ta effectively seen during trainirig + p sequential data are
Update Algorithm: Because the norm weighting matrix"€€ded to formt, (¢)]. This effective training window, along
U, (i) is updated forall network basis functions when newWith the predicted point, shift forwar_d in time as the dynamic
data arrive, the update froffl, (i) to F',,(i-+1) is full rank, and network advgnces thrqugh the entire input signal sequence.
hence, (34) must be solved directly without using the recursigithough, strictly speaking, the test set per time step is a single
aids (35) and (36). It was found in previous experiments [3é?ut—of—samp_le) point, by iterating the training/prediction cycle_
that the speech samples were sufficiently nonstationary so tA4g" the available input time series (the number of samples in
without careful choice of the update parameters indicated $3¢h Speech signal listed in Tables V and VI lesg samples
first Updating step of each algorithm, the recursively updaté%r initialization), this pointwise pred|ct|on performance can be
fixed-size network outputs would frequently loose track of tHaveraged to gauge the generality of our method. For example,
speech samples within an orderofime steps from the last the PSNR figure in Table VIIl for network 1 operating on
full-rank update. Notwithstanding the results of the previouidnal m130 is computed according to (38) and (39) with
section, the issue of how best to select the update paramet¥rg: 20215 — 100 — 50 = 20065 effective test data.
in the recursive fixed-size update algorithm to minimize per- NOt€ that in our case of zero-mean input signals, because
formance loss from partial updating remains an open questid/f Use estimated signal powers rather than estimated signal
3) Comparison to Linear RLS Algorithm and Previou¥arances, as Is someﬂme; the case in defining the PSI_\IR,
Work: The performance measure we shall use ispeglicted the following performance figures are somewhat conservative
signal-to-noise ratio (PSNRylefined for an actual or input (for €xample, a nonzero mean level of error will degrade

signal sequencéy(i)}Y, by perfo_rmance by th(_e former definition but not by the latter
’ A o definition). That said, the PSNR results of the three RBFN
PSNR(dB) = 10logy,(03/02) (38) predictors individually and jointly (as will be explained) over

the complete speech samples can be found in Tables VIII-XII.
Summary tables of minimum, average, and maximum per-
formance gains are listed in Tables X, Xlll, and XIV for
1 XN ) the male only, female only, and joint male/female samples,
oy =N >y respectively. The first four lines of each table list the individual
i=1 predictor performances along with their arithmetic average.
1 5, A We see an average gain of 1.65 dB of the basic regularized
% =N Z e(i) where e(i) = y(i) —y(i) (39 RBFN predictors over the RLS predictor for the male speech
=1 samples while the average gain for the female speech samples
andg(¢) is the network prediction for actual signg{:). The is somewhat better at 2.67 dB. Over both the male and
PSNR can be considered a measure of gemeralization female speech samples, the average gain is 2.2 dB. The

where 0:,5 and rff are the actual and error signpbwers
estimated by

1o
12

I\DI
-
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TABLE

X

SUMMARY OF GAINS IN EXPERIMENTAL RESULTS FOR SPEECH
PREDICTION, MALE SPEECH SAMPLES (ALL FIGURES IN DECIBELS)
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TABLE XV

TRIAL PARAMETERS FORREFERENCEADAPTIVE LINEAR PREDICTOR (a:h:b
DENOTES SEQUENCE FROMa TO b INCLUSIVE SAMPLED AT h, P(0) Is INITIAL

Gan i T avg, | max. INVERSE OF INPUT CORRELATION MATRIX, p |S EXPONENTIAL WEIGHT)
NT. avg. over RLS(auto) ~0.48 | 1.65 | 2.77 RLS parameter Trial range/sctting
RLS(NL) over NL avg. 0.67 | 1.68 | 1.99 P0) 1001
RLS(NL-+auto) over RLS(NL) | .10 | 0.51 | 0.78 T, 0,105, 107, 107, 0.01:0.00:0.20
Total over RLS{auto) 2.29 | 3.73 | 467 P 2:2:50

TABLE Xl
OVERALL EXPERIMENTAL RESULTS FOR SPEECH PREDICTION,
SampLEs f150—f154 (AL PSNRIN DECIBELS)

As previously mentioned in Section V-A.6, [31] and [32]
considered enhancing their nonlinear predictor performance

Network mo. | T150 51 52 153 5 by including a final stage of adaptive linear prediction, with
1 15.29 15.35 14.72 13.76 15.49 the latter work showing gains of between 1.6 and 2.0 dB
2 15.58 15.67 14.91 12.90 15.07 . . . . .
3 1448 555 A5G 378 515 over the final linear stage by itself. We follow this point
NT. avg, 15.11 15.52 15.36 13.48 15.24 of view to improve our nonlinear predictor performance by
RLS 11.05 13.10 12.29 9.869 13.68 . .. . . .
(auto) | (50,0.999) | (44,0.99) | (44,0.99) | (50,0.999) | (46, 0.99) linearly combining the three predictor outputs, resulting in the
RLS 16.74 17.37 16.42 15.37 16.93 i i i 1
e 50999) | (1099 | (Los®) | (30080 | (L 099) nonlinear-linearprocessing scheme described below.
RLS 16.93 17.43 16.47 1550 1716 4) Linearly Combining Predictor Outputs for Improved
(NLauto) | (4+6,0.999) | (1+4,0.99) | (246, 0.099) | (4+8 0.999) | (2448, 0.999) Performance: During the course of the experiment, we noted
TABLE XIi that the error sequences produced by an ensemble of nonlinear

predictor outputs trained on a given speech sample with
different parameters exhibit some residual correlation with
the desired prediction. This observation suggested that by

OVERALL EXPERIMENTAL RESULTS FOR SPEECH PREDICTION
ExAaMPLE, SAMPLES f155—f159 (AL PSNRIN DECIBELS)

Network no. 155 f156 f157 f158 1159
1 18.02 15.60 15.42 1174 1538 standard properties of least-squares estimators, some further
: . e % o 5 improvement in prediction performance should be possible
N;Ia;g. igi ﬁzg }gfs 12-30 1531 when the predictor outputs are used as inputs in an additional
g 5. . 3.15 10.09 14.26 . . .
(auto) | (42,099) | (50,0.099) | (50,0.999) | (50,0.999) | (50, 0.999) level of regression on the desired (actual) speech signal. In
&LLS) (11968969) (313?{;9) (117(55919) (113-3‘39) (11(7)-‘339) selecting a compatible structure for this subsequent processing,
RLS 20.60 770 174 1429 783 it was desirable to retain as much as possible the recursive on-
(NL-tauto) | (1+4, 0.99) | (4+5,09%9) | (4+52, 0.999) | (3+8, 0.999) | (3+8, 0.999) line nature of the algorithm without significantly increasing the
TABLE Xl computational burden. Thus, the sixth line of the overall result

tables shows the best observed performance for each speech
sample when the three RBFN predictor outpkiti), Y2 (i),
andY3() at each time stepare formed into 3-tuple¥ (:) =
[Y1(4),Ya(i),Y3(i)]T and taken as regressive vector inputs

SUMMARY OF GAINS IN EXPERIMENTAL RESULTS FOR SPEECH
PREDICTION, FEMALE SPEECH SAMPLES (ALL FIGURES IN DECIBELS)

min.
1.05
1.06

Gain
NL avg. over RLS(auto)
RLS(NL) over NL avg.

avg.
2.67
1.70

max.

41.06
217

RLS(NL tauto) over RLS(NL) | 0.05 | 027 | 0.74 into another exponentially-weighted RLS predictor lioear
Total over RLS(auto) 348 [ 463 ] 588 combiner (to avoid confusion with the reference adaptive
linear predictor). As before, the regressive orders and weights
TABLE XIV

of the best such RLS linear combiners are given in parentheses
following their performance figures and are chosen from trials
conducted over the parameter ranges specified in Table XVI.

SUMMARY OF GAINS IN EXPERIMENTAL RESULTS FOR SPEECH PREDICTION,
MALE AND FEMALE SPEECH SAMPLES (ALL FIGURES IN DECIBELS)

Gain min. | avg. | max. X
NL avg, over RLS(auto) | _0.48 | 2.16 | 4.06 In most cases, only the most recent RBFN predictor outputs
RLS(NL) over NL ave. 067 | 1.64] 2.17 are necessary to provide a further nontrivial performance gain
RLS(NL-+auto) over RLS(NL) | 0.05 | 0.39 [ 0.78 ;
Total over RLS(auto) 220|418 | 588 averaging 1.64 dB over both the male and female speech

samples. Augmenting the RBFN predictor output 3-tuples with

RLS predictor performance reported in the fifth line (Wm%;oregresswe inputs drawn directly from the speech samples

. A ives an additional small improvement of 0.51 dB for the
the corresponding autoregressive input order and exponen le speech samples and 0.27 dB for the female speech

weight in parentheses) is the best one observed in a Serie§cfrﬁ1ples, on average, for the best observed linear combiners.
experiments for which the parameters vary as in Table XV. ¥,q exact performance figures for this nonlinear-linear input
allow a fair assessment of the gains possible from nonling&figuration are given in the seventh line of the tables, where
versus linear prediction, the maximum orgenf the linear ne notation in parentheses iofilinear 3-tuple order- linear
predictor is set to 50, which is the same as for the RBFNytoregressive order, RLS weighfTable XVII lists the trial
With regards to nonlinear speech predictors, these figuiggrameter ranges in this final configuration for which the
are in general agreement with those in previously publishegerage performance gain over the RLS predictor for both
work [32], [38], [39]. In particular, [38] reported an increasenale and female speech samples is 4.18 dB. We note that
in prediction gain of 2.8 dB when a nonlinear predictor ithis average performance gain is approximately 2 dB greater
trained on the residuals of a time-varying LPC predictor, whidhan that reported in the relevant rows of [32, Tables II-IV],
may be considered &near-nonlinear processing scheme.although that study was limited to three speech signals. This
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TABLE XVI Lemma 1:Let f/ be an NWRE with radial kernek’ =

TRIAL PARAMETERS FORRLS LINEAR COMBINER ON RBFN QuTtPuTs ONLY A / : .
(a:h:b DENOTES SEQUENCE FROMa TO b INCLUSIVE SAMPLED AT &, P(0) Is C- K, whereC = sup,g« K'(z), and with bandwidth

INITIAL INVERSE OF INPUT CORRELATION MATRIX, p |s ExPONENTIAL WEIGHT) — parameterr,, designed from a given training s&t. Then, for

RLS parameter ‘Irial range/setting any n > 1, o> 10g (C/(h,(rllﬁn (Z)))/ 10g T, and z < Rd such
. - A <.
D e 0 T, o, 002 that the denominatath!p,(z) = 1,7 g,,(2) of f, is not zero,
) LL6 a regularized RBFNf,, with kernel K may be constructed
such that
TABLE XVII . 5
TRIAL PARAMETERS FORRLS LINEAR COMBINER ON BOTH RBFN |fn(z) - fn(z)|
OuTPUTS AND AUTOREGRESSIVEINPUTS (a:h:b DENOTES SEQUENCE M
FROM @ TO b INCLUSIVE SAMPLED AT h, P(0) IS INITIAL INVERSE OF < — — (40)
INTPUT CORRELATION MATRIX), p |s EXPONENTIAL WEIGHT) na/Qhﬁpn(Z) [namh;llpn(z) - Cn_a/Q]
RLS parameter Trial range/sctting . . .
P0) 1007 where||y||. < M, i.e.,y is element-wise bounded b, and
—6 E -3 5 .
1;7;; IO 210 0 b i where1l,, is a constant vector of ones.
1 _ N _
Puyto 22:50 Proof: Lettingy,, = ny,,, wherea > 0 is an exponent
to be determined later, we may equivalently write the NWRE
. . . . output as
gain naturally comes at the price of increased computational
i 3 i ' 7 T -1
complexity, namely,O(n3) per time step, where: is the fu(2) = g, (2)An(2)]) .. (41)

number of basis function, versu8(p?®) for the linear RLS

predictor, wherep is the linear autoregressive order. Whethetonsider the regularized RBFN (with kern&l) constructed
the increased computational complexity of the regularizgghm ¢, using the scaled outputg, in place ofj, and with
RBFN predictor over a linear one such as the RLS predictorjis 4 _ — 0% T ()1 = notLpds _
acceptable depends on the intended application, but we shoféS pari/nhgmtr?g Nvi\/rli\’(é)outguﬁ(()zzhg ouzclput }(;?It)ﬁi(:)r/egular-
note that further gains in the nonlinear predictor’s performan d RBFN, we find that the difference can be bounded (by
over the linear one should (at least in principle) still be pOSSib@auchy—Schwarz) as

since not all network parameters were fully optimized, e.g.,

the bandwidth parameters. |fn(2) — F(2)]

VI. CONCLUSION = [(9.(2), (G + X (2)) My, — On(2)D) "',

< g DIHIGn + MDD = a2 D)7 Iyl
We have presented two theorems relating the NWRE to the 1G] |I1]
regularized RBFN that justify its application to nonlinear time < lg.(2)l WETE T(Lz) —an |91
series prediction. In the case of certain NLAR processes, we " " "
An(2) > [|Grl|- (42)

show that minimizing the risk over the training set is asymp-
totically optimal in the global m.s. prediction error, thereb
demonstrating the key role regularization plays in the RBF
To deal with the nonstationarity induced by a multimodal

’{Hsing the Euclidean norm as an upper bound for all quantities
xcept forG,,, which we bound in Fsbenius norm ajG,, || <

. ) : . : . 7, We obtain

time-varying regression function, recursive algorithms for the’

periodic updating of RBFN parameters have been developed | ; o < n @

for both the infinite and finite memory cases that exhibit [n(z) = Ju(2)] —\/H)\n(z)()\n(z) —n)n vnM
significant resemblance to the standard RLS algorithms and n2n®M

allow for similar interpretations. Experiments conducted on a < Me(2)On(2) — 1)

suite of phonetically balanced male and female speech samples

demonstrate the nontrivial gains over linear techniques posghich can be written for our choice of,(z) as
ble when the nonlinear processing of the regularized RBFN is

applied to the one-step-ahead prediction of NLAR processes. |f,,(z) — f.(z)|

n

We also describe how a simple linear combination of an n* 202 M

ensemble of nonlinear predictor outputs via the RLS algorithm < \/ﬁna+1hdﬁ (2)(n*Fhdp, (z) — nC)

can yield further improvements in prediction performance with e C2M e

little added computational complexity while alleviating the < (43)

difficulty of optimal model parameter estimation. 2 pn(2)[n 20 pn (2) — O 2]

The condition on\,,(2) in (42) can be satisfied by choosing

APPENDIX A
PROOF OF THEOREM 1 M(2)>n = 0T hip,(2)/C>n = a
In the proof, the following lemma for NWRE approximation > log (C/(h%p.(2)))/logn. (44)

with regularized RBFN'’s in the deterministic case will be
useful. O
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Main Proof: Building on Lemma 1, we treat each case
separately.

1)

2)

It is easy to show that (15) implies that by choosiNg
to satisfy

n>N = sup [p,(2) (45)

zeD

~p(x)| <

we haven>N = p,(z) > m/2 for all z € D.
Hence, forn >N, we may replacep,(z) with m/2

in the denominator of the upper bound, and the term
Cn~%/? can be dominated by selecting a sufficiently
large constant to multiply the numerator of the order
bound, i.e.3L >0 such that forn > N

Exz,[|f

L-C?°M C?’M
n*h24m2 = n®/2pd(m/2)[n*/2hd(m/2) — Cn—2/2]
(46)

From the basic KDE consistency conditioh? "= oo,
requiring o > max (2,log (2C/(h%¢m))/logn) ensures
that the approximation error vanishes with increasing

While the convergence rates for this case must be at Exz, [A;?(2)(

least as rapid as for the a.s. uniform case [by squaring
and taking expectations on both sides of (42) before
computing the sup on the left-hand side], we can obtain
slightly better convergence rates with tighter m.s. esti-
mates of the terms in (42). We begin be noting that it
is sufficient to demonstrate the corresponding result in
absolute value since

Exz, [|fn0o(2) = fu(2)]
=1, [(fn,00(2) = [1(2)(fn.00(2) + [1,(2))
+ 2/ (2)(1(2) = f0(2))]
Sjgg(lfn,oo( 2)+ [1(2)] + 20 (2))

Exz,[|fn00(2) = fL (2]

where the supremum i©(R;) for n sufficiently large
by assumption (18). Returning to the expectation term,
taking expectations with respect 1, on both sides of
(42), and applying Cauchy—Schwarz gives
(2) = (2]
< B/ [ll9.(=)IPJEZ (1G]]

BN Cn(2) = 1G] ) ZIEL

(47)

W2
(48)

The first term squarelir, [||g,,(2)||?] can be asymptot-
ically bounded in Euclidean norm as

AP =Y Ex, [K?(z‘ Z()
=1
—Omkp() K| ae.

(49)

where|| - || is the standard., norm with respect to

Lebesgue measure, and we have used the fact that (see

in [17, eq. (2.10)])
Sof T — d 2
/RdK < - )p<u>du—hn (2)]| K2

u n—>oo

Oa.e.

(50)
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where|| - ||2 is the usualL,(R¢) norm with respect to
Lebesgue measure. Similarly, we bound the second term
squaredE 7, [||G,.||?] in Frébenius norm and apply (50)
with Lebesgue dominated convergence to obtain

i:l Ez6).zG) [K ’ <%,LZ(J)>}

o(w [ [ (2052 Yoiat)
plals)) dali) dxt) )

— o R IpIBIIKIR)

A

[ETn[ n 2]

(51)

where we have applied (19). For the square of the middle
term, we may again apply the majorizatioid7,,|| <n

and use the same argument as for (46) to obtain the
estimate

Aa(2) = |Gl]) 7]
< L-Eg,[\;*2)], Vze D when n>N; (52)

for someL >0 and N1 € N. Next, we may substitutg
for p,, in the expectation with error bounded by

Ex, ()] — A 4(2)]
<Ex I\ (z) - 3 4<z>|1
1(2) — NGz
<Er Al(z) - M(z) }
<Az<z>+A2<z>><An<z>+Az>><A (2)-\2))
<Er. Ni(2) Ai(z) H
(53)

where A(2) 2 n**tLhdp(2)/C, whence, by Cauchy-
Schwarz

sup [z, [ 4(2)] = A *(2)]
zED
B2 || P2(2) + 22(2) 00 (2) + p(2)) |
<ZEB[EH[ (PP (2)/C) - pA(2) ]
w(2) = p(2)]. (54)

sup Eq, [|p
zCD

By (18) and (20), the first sup term is (at least) bounded
for « sufficiently large, whereas the second term van-
ishes by (17). Therefore, we have that fosufficiently
large

sup Ex, (722 (M (2) — 1Gal) ]
= O(supp~*(2)) = O((n"* hlm/©)™). (55)

The square of the last terfar, [||y,||?] is bounded (by
assumption) byrn?* A% so that combining the square
roots of the previous terms leaves us with the conclusion
that for sufficiently large:, we have (56), shown at the
bottom of the next page. In order for (48) to be valid,
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we require that (42) hold uniformly oveb, leading to wherel(-) is the indicator function for eventso that

the previous condition ofv > log (2C/(hdm))/logn,

wherem is as defined in (45). As an aside, if (17) is I T2 A TT 1/2
weakened to the corresponding mean-input case, ther?. 2. ﬂ Anj(e) | < HPz,z(j)(A"J) = qu ().
(42) need only hold a.s2 Finally, the lower limits of 1 J=1 =1 J=1

and» imposed onx by the maximum function ensures (59)

that the upper bound on the m.s. approximation error in _ . N
(21) decreases as — oo by the consistency condition -t ? @nd p; be the marginal densities df and Z(j) with

nhd " o 0 supportsS and S;, respectively. Then

The implications of these approximation theorems are dis- . p S () d
cussed in greater length in [23, Sec. 2.1]. Here, we merely nof(®) = s, z{z € St ||z — | > ejp; (=) dz
that while the introduction of, is motivated by its utility in ’

the proofs, the arguments contained therein imply, nonetheless, = / Pz{z € S: ||z — x|| > ¢}p;(x) dx

that over any given compact sét ¢ R?, the approximating TESGAS

regularized RBFN's havg,, growing asymptotically at ratat + / Pz{z € S: ||z — || > }p;(z) dz. (60)
leastQ(n>+%/ (@49 1og? n)5 for & > 2 in the uniform case and zCS;NS '

Q(notd/ )y for 1in the m.s. case, i.e., at least roughl i - L
(n ) for a> g (yﬁ,}/ the geometric ergodicity offZ(i)}, the first integral

Q(n) in both cases. Thus, for our purposes of comparis s ’ - ;
with regularized RBFN's trained in the “usual’ way, i.e can be made arbitrarily small fof sufficiently large (since
oy J]—00

with a single regularization parameter determined once froffz(;)(2(J) € S;AS)”— 0 by the triangle inequality| Pz —

a realized training set, and used thereafter over the entird’z()llv < |[Pz — 7llv + [ — Pg;llv, wherer is the
network domain, it suffices to consider the NWRE as (roughfifationary measure fofZ(i)}), whereas the second integral
speaking) “infinitely” regularized RBFN’s. can be expressed as

/ Pz{ze S: ||z — z|| > e}p;j(x) dz
IESjﬂS

APPENDIX B
PROOF OF THEOREM 2 - / (1-Pz{z€S: ||z —=||<e}p;(z) dz
Before proceeding, we shall need the following elementary TSNS .
lemma concerning the convergence in probability of one- = Pzj(2(j) € 5; N 5)

nearest neighbor distances.

Lemma 2: Let {Z(1), Z(2),--, Z(n), Z} 2 {Z,,Z} ~
PZ,Zn be n + 1 consecutive samples from a geometricaIIYn
ergodic procesq Z(:)} with stationary (marginal) measure
Pz. Then, for eache >0

—/ Pz{ze S: ||z —z|| <elpj(x)de  (61)
xCS;NS

which the first term is no greater than unity, whereas
the strict positivity of the second term giver> 0 follows
from that of the integrand. To see this last fact, note that

. , n—oo i henz € S, the integrand must be strictly
Pz n: — () 0 (s7) dvenanyc>0 whens € 5, : .
72,7 % =L lle = 2Dl >} "= ®7) positive because &z is assumed absolutely continuous with
respect to Lebesgue measure, hengemust have nonzero
where|| - || is the Euclidean norm i<, Lebesgue measure, andb)s almost everywhere (Lebesgue)

Proof: Let ¢ >0 be given. Set4,, ;(e) 2 {z,z,: ||z — continuous; therefore, an arbitrary radius open ball centered
z(5)||>¢}. We use the independence bound implied b§t almost all points ofS must have nonzerd’z measure.
Cauchy—Schwarz for the intersection of a finite collection dfhe proof can now be completed: Given>0, take N
events{ F;}7_; defined with respect to a common probabilitysufficiently large so thaj}/Q(e) <1/2forall j > N. Then, for
measurer’ all n> N —log, 6, we havell?_, 7+/*(e) < 6, as required

" " " We generalize slightly the definitions of loss and risk from
p<ﬂ F7> = [El I(F)| < HP1/2(E) (58) Section lll. Define the (squared-error) loés of an estimate

i=1 =1

f» with respect to a true functioii givent,, as

i=1 =
=z Al . = N2
5f(n) = Q(g(n)) meansaC >0 such that|f(n)| > Clg(n)| for all n Lo(fn, fitn) = " Z(f(z(L)) — ful2(2))) (62)
sufficiently large. i=1

sup Er, [
zeD

Froo(2) = F(2)°] :O<(”hiL||K||§)”2 (02 |IplI311K13)! 2 - ﬁn“M)

(n*Hthim/C)?

=O(C*MVL||plla| | K |30 “m ™) (56)
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and the riskR,, i.e., is the Voronoi cell centred ai(:) of the partition induced by
the input sequence,, contained int,,. DecomposeR, with
Ro(Fu f) 2 Eq[La(Fu. £, T2 (63) respect taB,(c), wherec = ¢(n) (as will be explained later)
so that

Similarly, define the global m.s.e. or risk as

mmﬁ>é/twvwmww

Ro(f.f) = El(f(Z) = Fa(2))°] (64)
o . -/ v, (2) dP(z: 1)
By identifying Ra(f, f.) with R,(\,) and Rs(f, f,,) with (2,t0)E B (€)
[E[(S,?L(n+_1)] [by IettingZ 2 Z(n+1)],we can prove Theorem +/ v (2) dP(z, ). (70)
2 as a slightly modified version a corresponding theorem from (2,t,)CBe (o)

[23]. Conditions a) and b) in the preamble of Theorem 2

correspond to conditions 1 and 2 stated below. By the assumed boundednessfoéind condition (66) ory,,,
Theorem 3 [23]: Assume thajf is bounded a$f| < Lyand Lemma 2implies that the latter integral can be made arbitrarily

Lipschitz with constantk ; over R¢. If {Z(: )} = (X, ()} small for n sufficiently large since for any > 0

is a geometrically ergodic process, with stationary measure

absolutely continuous with respect to Lebesgue measure via / vy, (2)dP(z,t,) < Ly, Pz 7, (Bi(e)) < §

densityp,, and satisfying the following. (z:tn)E B (€)

1) There exists a positive constahf satisfying (1)
sup |pr(2)| < Lr. (65) when n satisfies
zER4
2) There exist positive constanfsand K for the regular- log < )/2103 gi(€) <1/2 (72)
ized RBFN estimatef,, constructed froni;, satisfying
forn =12 - whereL, = (L;+L)? is a global upper bound on andg; is
sup |fn(27 T <L asPr (66) as defined in Lemma 2. For the former integral, we may write
zERE
K,<K as®p (67) / v () dP(z, )
} (2, )EBy (¢)
where K, is a Lipschitz constant fof,,. i
Then P $ = / (z) dP(z,t,)
(2,t2)E Dy, (6)
|R2(f, fn) — Ra(f, fu)| =70 as.dr,. (68) > / (vr,, (2()) F Koe) dP(2, t,)
+ (z,tn)ED,, ;(€)
Proof: First, we note that when the proces«% (i)} _ n
is geometrically ergodic as assumed, (65) implies that the z/ (vt, (2(4)) F Koe) Pgp, (Dn,i(e)| T = tn)
corresponding sequence of marginal densitjps} is also REAT )
bounded, i.e., there exisis, >0 such that -dP(t,) (73)
sup sup |p;(z)| <L, (69) and by the definition ofD;,, ;(¢) and the fact thatf and
JEN zeRd f» are bounded and Lipschitz implies the same fowith

. . A
where p; is the marginal density foZ(j). The geometric Lipschitz constant notgreater thah, = 2(L;+L)(K;+K).
ergodicity condition implies the (Lebesgue) a.e. pointwiseédere, the notatioru = f(b F ¢) is shorthand for the double

+
—_—
convergence 0p; 10 pr s j > (by choosing5 to be inequality f(b—¢) < a < f(b+ ¢), wheref is an expression
a point set when applying the definition of total variation

contamlngb F ¢. The remainder term containing.,¢ can be
norm in footnote 3). Thusp,; can be bounded either by

bounded uniformly over all possible training realizations

L., whenj> N for someN & N sufficiently large, or by . . S o
. . equivalently, over all possible training input realizationg
SUP;j_1 2. N SUPega |pj(2)] for 1 < j < N. (eq y P g mp

i . A since
_For convenience of notation, let;, (-) = (f(-) —
fn(- )%, Consider the e-cover B,(¢) induced by a Pz (Do i()| T = t,)
A L. . A | Ty,
realized training sequendsg, i.e., B,(¢) = U, B, (e), <L,20% Vi, and i=1,2,---,n (74)
= P - ? n — & ’

B i(e) 2 {z,tn: ||z — 2(9)]| <e}. An equwalent disjoint
cover may be obtained by replacidg, ;(¢) in the definition py (69) and where we have used the (Euclidean) volume of
of B,,(¢) with D,, ;(¢) 2 B,.i(e)NV;, (2(i)), whereV, (z(i)) ad-dimensional cube ifR* with edge2e to upper-bound the



2520

volume of corresponding closed ball of radiasHence, we
have the deviation bound

/ vy, (2)dP(z,t,)
z,tnCDn(e)

’ PZlTn (Dn,i(ﬁ) |Tn

- [ Yot

tn =1
=t,)dP(t,)| < nK,Lye(2¢)".
(75)

For the remainder term(n) 2 nK,Lye(2¢)? to vanish as
n — oo, We require that?t! = O(1/n1+7) for someg > 0.
At the same time, the inequality

qi(€) =1 = Pz z()(Bn,i(e)) 2 1 - L,(2¢)*

1=1,2,--,n (76)
implies that we cannot let decrease too quickly as — ~
if (72) is to be satisfiable foé = 6(n) = O(1/n*) with
a >0 since forz small,log (1 — z) = —z. In other words,
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where the conditiony 4+ 3 <1 is required for (72) to hold.
This result implies that the asymptotic rate of convergence
of Ry(f, fn) to Ry(f, f,) can be made arbitrarily close to
(but strictly less than)?(n~'/¢), from which the desired
conclusion follows. O

We note that (67) is satisfied when, e.g., the kernel function
K is Lipschitz since we have assumed in both condition
A.2) and the theorem preamble that the underlying nfidp
Lipschitz and chosen conditions so that the NWRE and, hence,
the RBFN converge tg in a compatible mode. Furthermore,
for the smooth functions and absolutely continuous measures
assumed throughout, m.s. convergence over a compad? set
implies pointwise a.e. convergence; hence, the estimptes
must converge to a Lipschitz function.
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et = Q(1/nt77) for some~ € (0,1). Equating the two
exponents gives the relationship betwgeand~ as

1—4d
14+d°

0<p<l/d, ~= (77)

Returning to the integral term in (75), we recombine the3l

iterated expectation and note that

[ vt = [ Y et0)

to =1 to, i=1

- Pyir, (D i ()| T = ta) dP(t,)
< sup |Utn (Z(L))|
i=1,2,---n
i 1
It / dP(z,t,)
P n zZtn €Dy ;i (€)
< Ly|l— Z Pz 1, (Dni(e)) (78)
=1
< L1 = Pz, (Bu(e)| = Ly Hq1/2

where we have again invoked Lemma 2 in the last line 1t
6, as defined in (72). Combining the inequalities (71), (75)14] E.

and (79) yields

| Ra(f, ) = Ba(/, J)]
< r(n) +26(n)
=O0(n™") +0(n™*),
a+ <1

0<pB<1/d
(80)
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