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Oscillatory states in the electroencephalogram (EEG) reflect the
rhythmic synchronous activity in large networks of neurons. Time-
[frequency (TF) methods, which quantify the spectral content of the
EEG as a function of time, are well suited as tools for the study of
spontaneous and induced changes in oscillatory states. The use
of these methods provides insights into the temporal dynamics
of EEG activity in both humans and experimental animals, and
aids the study of the neuronal mechanisms that generate rhythmic
EEG activity. Further, the use of TF coherence analysis, which
quantifies the consistency of phase relationships in mulitichannel
EEG recordings, may contribute to the understanding of signal
transmission between neuronal populations in different parts of
the brain. We have used TF techniques to analyze the flow of
activity patterns between two strongly connected brain structures:
the entorhinal cortex and the hippocampus. Both of these structures
are believed to be involved in information storage. By applying
various frequencies of stimulation, we have found a peak in the
spectral power in both sites at around 18 Hz, but the coherence
between the EEG signals recorded from these sites was found to
increase monotonically up to about 35 Hz. We have also found
that long-term potentiation, a strong increase in the efficacy of
excitatory synapses between these sites, either had no effect or
decreased coherence.

NOMENCLATURE

Dentate gyrus: a major component of the hippocampus
that receives extensive cortical input via the entorhinal
cortex. ~

Electroencephalogram (EEG): a recording of the elec-
trical activity of the brain through surface or implanted
electrodes.

Manuscript received August 2, 1995; revised March 8, 1996.

S. Haykin is with the Communications Research Laboratory, McMaster
University, Hamilton, Ontario L8S 4K1, Canada .

R.J. Racine and C. A. Chapman are with the Department of Psychology,
McMaster University, Hamilton, Ontario L8S 4K1, Canada.

Y. Xu is with the Communications Research Laboratory, McMaster
University, Hamilton, Ontario L8S 4K1, Canada, and the Department of
Psychology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.

Publisher Item Identifier S 0018-9219(96)06204-4.

Entorhinal cortex: a cortical region surrounding the hip-
pocampus which receives processed cortical information
and sends it on to the hippocampus (dentate gyrus).

Gamma band: a frequency band for oscillatory compo-
nents of the EEG that fall between 20 and 80 Hz.

Hippocampus: a brain structure that lies in the region
of the temporal lobe of the brain and receives processed
information from several different sensory systems.

Long-term potentiation: a long-lasting increase in the
strength of synaptically induced neuronal responses due
to the application of electrical stimulation to the input
pathways.

Neuron: a cell in the nervous system that is organized to
generate and transmit electrochemical signals.

Olfactory bulb: the brain structure that receives input
from olfactory receptors.

Pyriform cortex: the area of the brain that receives input
from the olfactory bulb; this area is also referred to as
olfactory cortex.

Synapse: the connection between neurons, via which an
electrochemical signal is transmitted.

Temporal binding: the linking of individual neuronal rep-
resentations of different, local features of external stimuli
by a common oscillatory pattern of discharge.

Temporal lobe: the part of the brain just adjacent to the
side of the head; the pyriform cortex, entorhinal cortex, and
hippocampus lie within this structure.

Theta band: a frequency band for oscillatory components
of the EEG that fall between 4 and 12 Hz.

1. INTRODUCTION

One of the great challenges in neurobiology is the un-
derstanding of how sensory information is represented by
spatiotemporal patterns of neuronal activity and how these
representations are transmitted from one brain region to
another during their further elaboration and processing
[1]. The measurement of electrical brain activity, and its
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correlates with behavior, can provide us with useful clues
about these processes. Unfortunately, current technology
does not allow us to record the individual activities of more
than about 50 neurons at a time (and very few laboratories
are able to record from more than three or four). With such
small numbers of cells sampled, there is little that we can
say about the nature of the networks of millions of cells
that mediate cognitive functions.

The alternative to multiunit recording is the use of
large electrodes to record the summed electrical activity
of very large numbers of neurons (the EEG) [2]. EEG
can be recorded from scalp electrodes in human subjects

-or from electrodes implanted in specifi¢ brain regions of
experimental animals. While the spatial resolution of the
EEG is poor, the temporal resolution is quite good and
can provide us with some insights into the activity of large
networks of neurons. Spontaneously occurring EEG can be
used to monitor the activity of neuronal networks during
naturally occurring behaviors [3], [4], and changes in EEG
activity following the presentation of experimentally con-
trolled stimuli can offer further insights into the processes
of perception, learning, and memory [5]. Such stimuli could
range from relatively normal sensory (e.g., auditory or
visual) signals.to the application of electrical stimulation
directly to brain sites through implanted electrodes. Both
spontaneous and evoked EEG activity can be oscillatory in
nature, and EEG recordings are used extensively to monitor
neuronal activation patterns, and the flow of neuronal
signals between brain sites.

EEG time series usually contain multiple frequency com-
ponents, which vary spontaneously and in response to
experimental manipulations. Further, these data sets can be
quite large, especially when multiple brain sites are sampled
in studies of the relationships between EEG activity in
connected regions of the brain. There is a clear need for
effective techniques for the analysis of these large data
sets. In this paper, we explore the application of time-
frequency (TF) analysis techniques to the description of the
genesis and propagation of oscillatory EEG activity in brain
sites believed to be involved in information storage. We
have used these techniques to monitor the responsiveness
of particular brain sites to rhythmic stimulation. We have
also used coherence analysis to measure the transmission
of induced signals between brain sites, both before and
after increasing the strength .of synaptic connections in the
pathways linking these sites.

II. THE NEED FOR TF ANALYSIS

Oscillatory states are the most striking feature of EEG
activity, because they reflect not only the synchronization of
massive numbers of neurons but also a temporally ordered
rhythmicity of activation [6]. Different oscillatory patterns
may be indicative of distinct information processing states,
and it has been proposed that the oscillatory patterns play an
active role in those states [6], [7]. According to this view,
the rhythmic synchronization during oscillatory states can
serve to enhance perception, learning, and the transmission
of neuronal signals between different regions of the brain.
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Traditional spectral analysis has been widely used to
quantify the different oscillatory activities in the EEG [8],
[9], but the statistical assumptions underlying these methods
require the time. series to be wide-sense stationary. In
reality, the neural processes that generate the EEG are
intrinsically dynamic over many time scales, and the EEG
can be considered quasistationary only for periods of a
few seconds under controlled conditions [10]. Indeed, it
is often the nonstationary nature of the EEG that is of
primary interest. Transient changes in the power or peak
frequency of EEG rhythms can provide information about
the dynamic and reactive properties of neuronal substrates
that mediate those rhythms. Unfortunately, these transients
are not quantified with traditional spectral analyses that do
not include time.

TF analysis methods, describing the frequency content
of a signal as a.function of time, are able to quantify
these transients. Indeed, these methods have a long history
of application to the EEG [11]-{17]. The theory of TF
distributions (TFD’s) is well developed and there are both
linear and nonlinear methods available for use [18], [19].
The linear methods include the, short-time Fourier trans-
form (STEFT), which is a natural extension of the ordinary
Fourier transform [20]. The nonlinear methods include the
Wigner—Ville distribution (WVD), which is a bilinear TFD
[18], [19]. Our primary interest in TFD’s is in their use as
a tool for “signal analysis.” In this context, the WVD offers
a higher resolution capability than the STFT, but it suffers
from two serious shortcomings: 1) the generation of cross
terms due to the presence of multicomponents in the signal
and 2) the presence of “negative” energy contributions.

Most of the research results reported in this paper are
based on the STFT, and some comparisons with the WVD
are included. We also experimented with the pseudo-WVD
that employs a window function. This calculation has the
effect of attenuating the highly nonlocal nature of the WVD,
with the result that the cross terms are suppressed to some

_extent [18].

These TF techniques have been apphed to the study of
oscillatory patterns and connectwlty in various brain areas.’
Our primary focus has been on an integrative system. that
processes olfactory inputs.

III. OSCILLATORY PATTERNS IN THE OLFACTORY
SYSTEM AND TEMPORAL LOBE EEG

The temporal lobe is the part of the brain lying adjacent
to the side of the head (temple). The: structures of the
temporal lobe, including the olfactory system, display a
variety of oscillatory rhythms related to perceptual and
cognitive activities. One role of these oscillatory states
may be to synchronize the activity of spatially diffuse
populations of neurons, so that they may become more
effective in forming global neural representations of sensory
input. Exposure to an olfactory stimulus activates olfactory
receptors that transmit information to a structure called the

“olfactory bulb. An olfactory stimulus triggers a burst of

gamma (20-80 Hz) activity in the olfactory bulb, which
is then projected to other sites within the olfactory system
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DENTATE GYRUS
(HIPPOCAMPUS)

OLFACTORY
BULB

Fig. 1. The trajectory of the polysynaptic pathway tested in the
experiments reported in this paper is shown above. This figure is
a highly schematic representation of the rat brain as seen from the
side. The information flow runs from olfactory bulb to pyriform
cortex to entorhinal cortex to the dentate gyrus of the hippocampus
(referred to in the paper simply as the hippocampus). In our
experiments, bipolar stimulating electrodes were implanted into
the pyriform cortex, bipolar recording electrodes were implanted
into the entorhinal cortex, and hippocampal dentate gyrus.

[21], [22] (Fig. 1). The spatial distribution of gamma wave
amplitude across the olfactory bulb changes gradually in a
spatially ordered way in a task requiring the discrimination
between different odors [23]. This suggests that gamma
waves play an important role in spatial coding of olfactory
stimuli. Similar oscillations have been recorded from the
cat visual cortex [24], and from the human cortex using
magnetoencephalography [25]. Neurons discharge rhythmi-
cally during gamma bursts, and the correlations between
the firing of multiple neurons increases with the integrity
of the stimulus driving the burst. It has been proposed
that the gamma oscillations can serve to temporally “bind”
the individual neuronal representations of different, local
features of a stimulus [26].

Because of the time-varying nature of perception and the
associated nonstationarities in gamma activity, TF tech-
niques are apprdpriate for analyzing the temporal rela-
tionships between gamma activity and sensory stimulation.
For example, during a visual performance task in which a
monkey must discriminate between two visual stimuli, local
EEG activities in a number of widely distributed cortical
sites show increases in coherence for a brief period fol-
lowing the stimulus presentation [27]. Coherence between
cortical sites increases not only at low frequencies but also
in the gamma range within a few hundred milliseconds after
the onset of the stimulus.

IV. SIGNAL TRANSMISSION IN THE CORTICAL
PROJECTIONS TO THE HIPPOCAMPUS

The hippocampus is a temporal lobe structure involved in
spatial memory and the integration of sensory information.
Much of the information the hippocampus receives from
cortical areas, including the olfactory (pyriform) cortex,

is funnelled through ‘the entorhinal cortex [28] (Fig. 1).

The pathway between the entorhinal cortex and the hip-
pocampus has been shown to readily support long-lasting
increases in synaptic connection strength which are thought
to contribute to memory formation [29]. Consequently, we
have chosen to study the transmission of neuronal signals
between the entorhinal cortex and the hippocampus (Fig. 1).

There were three primary objectives in this research:
1) to confirm that TF analyses are capable of resolv-
ing nonstationarities in the data set, 2) to determine the
frequencies for optimal signal transmission from the pyri-
form cortex to the hippocampus via the entorhinal cortex,
and 3) to determine the effects of enhanced connectivity
between the entorhinal cortex and hippocampus on the
flow of normal and imposed neuronal signals between
these sites. The enhanced connectivity was induced by
long-term potentiation (LTP) [29], which occurs in these
pathways following the application of brief, high-frequency

_ stimulation trains. Neuroscientists utilize this phenomenon

to study the mechanisms of synaptic plasticity. In our
experiments, LTP was induced by stimulating the pathway
connecting the entorhinal cortex to the hippocampus.

Electrodes were implanted into the pyriform cortex, en-
torhinal cortex and hippocampus (Fig. 1). Following re-
covery from surgery, samples of EEG were recorded from
the entorhinal cortex and hippocampus. The samples were
analog-filtered (0.3-100 Hz), amplified, and digitized at 256
samples/s. The STFT was applied to 30 s sweeps of filtered
EEG using a 2.0 s moving window (Hanning window)
with a 1.9 s overlap between consecutive computations.
This analysis was extended to the computation of a TF
coherence function! [12] between the entorhinal cortex and
hippocampal EEG. The TF coherence function provides a
frequency-specific measure of the linear phase coupling
between two signals as a function of time. Therefore, it
can be used to measure the efficacy of the transmission
of oscillatory signals from the entorhinal cortex to the
hippocampus. A total of 15 sweeps of EEG were collected
to obtain the TF coherence function; these sweeps were
disjoint in time.

1) TF Analysis and the Detection of Nonstationarities: We
applied the STFT and WVD to the characterization of
two different nonstationary data sets. First, we collected
samples of 8-10 Hz spindle discharges, which are obvious
spontaneous transient events in the cortical EEG. Second,
we experimentally imposed nonstationarities into the en-
torhinal cortex EEG by applying low-intensity stimulation
trains to pyriform cortex. The EEG was recorded during
stimulation with a train of pulses that was ramped from 1
to 40 Hz (50 pA, 100 us pulses). Fig. 2 shows examples
of both types of EEG trace and the results of two different
types of TF analysis. As can be seen, the nonstationarities

ILet X(")(t, f) and Y(")(t, f) denote the STFT’s of the signals
2(™) () and y(™)(t), respectively. The superscript (n) denotes the nth
of N realizations (sweeps) of the two signals. The TF coherence function
between the signals z(t) and y(t) is defined as follows:

N 2
STXOE, HY M, f)
R 7

STIXM @, HR Y )2
n=1 n

=1

where the asterisk denotes complex conjugation. Note that ¢ refers to the
time coordinate relative to the start of each sweep. Note also that for fixed
t, the TF coherence function I'2(¢, ) reduces to the ordinary coherence
function.
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Fig. 2. (a) The spindle discharge in the upper left panel was recorded from the rat frontal cortex.
It is a typical example of a nonstationarity in the sponzaneous EEG. (b) The EEG trace in upper
right panel shows a rather extreme form of nonstationarity, though of much lower amplitude, that
is induced in the entorhinal cortex by stimulation of the pyriform cortex. The stimulation consisted
of a train of pulses that was ramped from 1 to 40 Hz. The middle panels show the results of STFT
analysis of these.EEG segments. The lower images show the results of standard WVD analysis.

are well delineated by using these procedures. There are
some striking differences between the STFT and the WVD
images:? 1) the WVD exhibits a higher resolution than the
STFT, both in time and frequency, and 2) the presence of
the cross-terms in the WVD makes its interpretation more
difficult [particularly for the spindle waves—Fig. 2(a)].

2) Frequency-Dependent Transmission of an Externally Im-
posed Signal: While theta activity (412 Hz) in the entorhi-
nal cortex and hippocampus was the dominant rhythm and
was highly coherent in the spontaneous EEG, the results
of the STFT on the response to the ramped stimulation
trains indicated increased power during higher stimulation
frequencies [Fig. 2(b)]. We examined this more closely by
applying a wide range of frequencies of stimulation to
the pyriform cortex. The stimulation frequencies remained
constant throughout each train, and the frequencies tested
ranged between 2 and 35 Hz. This procedure enabled tight
experimental control over the temporal characteristics of
the input signal, and allowed the determination of the
frequency response characteristics of both entorhinal cortex

2In the STFT displays presented in Fig. 2, darkness is a measure of the
magnitude of the STFT. In the WVD displays, darkness is a measure of
the square root of the WVD. The reason for using amplitude, rather than
power, as the z coordinate was merely one of providing a better contrast.

We also experimented with the use of Hanning and Gaussian windows
to perform pseudo-WVD [18] in the data. The results obtained by the
latter method were very similar to those obtained using the standard WVD,
except for the attenuation of cross terms in some parts of the WVD image.
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and hippocampus. Although initiated electrically, the signal
transmitted to the hippocampus was synaptically generated.
within the entorhinal cortex (as confirmed by postmortem
analysis of stimulation artifacts which were small and well-
filtered—TFig. 3). The stimulation trains were applied during
the middle third of the 30 s EEG samples, and STFT
representations were obtained for both the spontaneous and
stimulus-driven segments of the samples. The stimulation
trains were set to an intensity level that would trigger
response amplitudes that were generally less than 10%
of the asymptotic evoked response amplitude. These re-
sponses could seldom be seen in the time-domain above
the background noise. : ‘

Power in the spontaneous EEG was concentrated at low
frequencies between 1 and 10 Hz (Fig. 4). The theta thythm
was the dominant rhythm within this band in both of the
tested structures. Power and coherence within the theta
band increased during ambulatory activities [30]. Changes
in EEG activity induced by the low-intensity stimulation -
were often more apparent in the TF images than in the time
domain (Fig. 4). Power and coherence were increased at the
stimulation frequeney and its upper harmonics (Figs. 4 and
5). ‘

When these measures were compared across different
stimulation frequencies, we found the largest stimulation-
dependent increases in power occurring at about 18 Hz
in both the entorhinal cortex and hippocampus (Fig. 6).
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Fig. 3. Representative EEG traces recorded during the experimental tests are shown for the
entorhinal cortex (a) and hippocampus (b) in the upper panels. EEG’s recorded from the same
sites 5 min after death from anesthesia are shown in the bottom panels. A 14 Hz stimulation train
was applied to the pyriform cortex in both cases. As can be seen, the electrical artifacts from the

stimulation trains are minimal.
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Fig. 4. The upper traces show examples of raw EEG activity in the entorhinal cortex (a) and
hippocampus (b) during application of a low-intensity, 14 Hz stimulation train to the pyriform

cortex. The lower panels show the results of STFT’s of these traces.

In contrast, the coherence function did not fall off with
stimulation frequency; rather it increased monotonically
(Fig. 6). Thus although the neuronal signals above 18 Hz
were reduced in magnitude, their phase coupling was even
more consistent. v

3) TF Analysis of the Effect of LTP Induction: Although
increasing synaptic connectivity was expected to increase
coherence between EEG’s recorded in the entorhinal cor-
tex and hippocampus, coherence was unaffected or even
decreased (data not shown). This was the case for both
spontaneous and stimulus train-driven EEG’s. In retrospect,
perhaps this result should have been anticipated. LTP effects
are typically observed clearly only at high levels of acti-
vation [31], and the stimulation intensities used here were
kept low to produce more normal polysynaptic patterns of
activation. Consequently, these results suggest that strong
enhancements in synaptic connectivity associated with LTP
may not result in similarly strong changes in the trans-
mission and phase relationships of more normal oscillatory
activation patterns. TF methods like those used in this paper
are essential to test for the occurrence of such changes.

V. DISCUSSION

TF signal processing techniques provide an effective tool
for observing the time course of changes in oscillatory
states in EEG activity. The correlation of these changes
with relevant physiological and environmental stimuli, in
turn, has aided the study of the functional significance of
oscillatory states during perception, learning, and pathol-
ogy. Further, TF coherence analysis methods have allowed
the investigation of the temporal relationships between
rthythmic activities in different regions of the brain. These
methods provide additional tools for investigating the role
that oscillatory states play in determining the flow of
neuronal activity from one brain site to another.

As expected, we found that the dominant thythms in the
spontaneous EEG of the entorhinal cortex and hippocampus
fell within the 4-12 Hz (theta) band. The TF methods
used here allowed the description of nonstationarities in the
power and coherence of these rthythms, and showed that the
response of these structures to pulse trains occurred most
strongly around 18 Hz. Further, coherence analysis indi-
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Fig. 5. TF cobherence function for the entorhinal cortex and
hippocampus data shown in Fig. 4. Note the enhanced coherence
at 4-8 Hz (within the theta band) throughout the sweep, and the
enhanced.coherence at the 14 Hz input frequency and its harmonics
during the middle 10 s.
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Fig. 6. Stimulation-related power in the (a) entorhinal cortex and
hippocampus and (b) coherence as a function of pyriform cortex
stimulation frequency. To determine the effects of stimulation, the
total power at the stimulation frequency and its upper harmonics
during the spontaneous EEG was subtracted from the measures
during train delivery. For the coherence measures, the mean
coherence in spontaneous EEG was subtracted from the coherence
measures during evoked EEG. -

cated that signal transmission between these sites peaked
at even higher frequencies.

Background rhythms in olfactory cortex often peak
around 40 Hz, so it was suprising to find peaks in the
power occuring at 18-20 Hz in response to stimulation
trains. Recently, Heale ef al. [32] have found that certain
odors do, in fact, trigger responses in the 18-20 Hz range.
They conclude that these odors are activating systems that
are tuned to respond to predator signals. TF techniques

* provide one means of tracking these signals through the
brain sites that would most likely respond to blologlcally
" significant signals such as predator cues.

The experiments on LTP induction indicated no change
or decreased coherence between the tested sites. In ongo-
ing experiments, we have now found that the coherence
measures based on strong sensory (olfactory).signals are
also decreased after the induction of LTP in the tested
pathways. We are currently investigating the basis for this
decrease in coherence. One possibility is that inhibitory
systems are potentiated along with the excitatory systems
by the application of high-frequency trains. The information
flow through the activated pathways would depend upon the
balance between excitation and inhibition, and this balance
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may be differentially affected at low and high activation
levels. In support of this proposal, we have found that
field potential amplitudes are often depressed at very low
stimulation intensities following the induction of LTP. Us-
ing TF techniques, we can monitor the coherence between
pathways at different intensities while manipulating the in-
volvement of inhibitory systems pharmacologically. These
experiments may lead to improved diagnostic techniques for
evaluating the balance between excitation and inhibition in
human neurological patients. ‘

There are a number of other analytical techniques that
could be applied to similar data sets. Rhythmic EEG
patterns are nearly always nonsinusoidal.  Consequently,
particularly in the more extreme cases (e.g., seizure dis-
charge, stimulation-driven activity), much of the power can
be found in the upper harmonics rather than in the fun-
damental (Fig. 2). TF methods that collapse power within
broad frequency bands (e.g., alpha, gamma) can obscure
the relationship between higher-frequency components and
their lower-frequency generators [33]. Upper harmonics can
be linked to the generator of the fundamental frequency
component by bispectral analysis [34], but to our knowl-
edge there are no reports of TF bispectral analysis of the
EEG. The cross bispectrum could be used to study. the
relationships between different frequency components in
separate brain areas; but here again there are few reports
of its use with EEG [35], and no TF applications. Another
promising methodology is partial coherence. When EEG is
recorded simultaneously from additional sites, the technique
of partial coherence can be used to account for the common
effects that other sites may have on the measured coherence
between the sites of interest [36], [37]. We are’ currently
exploring the use of these techniques for the study of signal

transmission between bram sites.
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