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Optimally Adaptive Transform Coding

Robert D. Dony, Student Member, IEEE, and Simon Haykin, Fellow, IEEE

Abstract— The optimal linear block transform for coding im-
ages is well known to be the Karhunen-Loéve transformation
(KLT). However, the assumption of stationarity in the optimality
condition is far from valid for images. Images are composed of
regions whose local statistics may vary widely across an image.
While the use of adaptation can result in improved performance,
there has been little investigation into the optimality of the
criterion upon which the adaptation is based. In this paper we
propose a new transform coding methed in which the adaptation
is optimal. The system is modular, consisting of a number of
modules corresponding to different classes of the input data.
Each module consists of a linear transformation, whose bases are
calculated during an initial training period. The appropriate class
for a given input vector is determined by the subspace classifier.
The performance of the resulting adaptive system is shown to be
superior to that of the optimal nonadaptive linear transformation.
This method can also be used as a segmentor. The segmentation
it performs is independent of variations in illumination. In ad-
dition, the resulting class representations are analogous to the
arrangement of the directionally sensitive columns in the visual
cortex.

I. INTRODUCTION

HE study of image compression methods has been an

active area of research since the inception of digital
imaging. Since images can be regarded simply as 2-D signals
with the independent variables defining a 2-D space, digital
compression techniques for 1-D signals can be extended to
images in many cases. As a result, a number of approaches to
the problem are well established {1]-[5]. In addition, there
has recently been an interest in applying neural network
approaches to the problem of image compression [6].

For most image compression techniques, the optimal method
based on some model of the image statistics is well known.
For example, for a pth-order linear autoregressive model, the
optimal linear predictor for differential pulse-code modulation
(DPCM) can be calculated from the image statistics [4].
The LBG algorithm for vector quantization (VQ) generates
an optimal set of codewords in the sense that the average
distortion is minimized [7], [8]. For transform coding, the
Karhunen-Loeve transformation (KLT) is the optimal linear
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transformation in the sense that it minimizes the mean squared
reconstruction error [5].

However, the assumptions upon which the conditions for
optimality have been based can be called into question. Specif-
ically, the use of global statistics for generating an optimal
coding scheme may not be appropriate. The use of adaptation
in many compression techniques has resulted in significant
improvements in performance. While these improvements
clearly indicate that adaptive processing is of merit, there has
been inadequate study into the optimality of the adaptation
criterion. This paper proposes a new approach to adaptive
transform coding in which the criterion for adaptation is shown
to be optimal.

The paper is organized in the following manner: Section
Il reviews the basic techniques of transform coding with
some recently developed approaches based on neural network
models. Section III presents the framework for adaptive coding
and reviews the subspace method of pattern recognition. The
new algorithm for optimally adaptive transform coding is
introduced in Section IV. The performance of the new method
for compressing images is investigated in Section V, and
Section VI presents the results when the new method is used
for segmentation. Finally, Section VII provides a discussion
of the salient points of this method and concludes the paper.

II. IMAGE COMPRESSION

Successful image compression techniques must satisfy two
conflicting criteria. During the coding phase of image compres-
sion, data are transformed from their native format, typically
an array of gray level or trichromatic pixels, into a format
that requires less bandwidth or storage. At the same time, this
transformation must preserve as much information as possible,
so that the difference between the original and decoded images
is not significant. The significance of such differences must be
evaluated within the context of the end use of the image. For
example, medical images must not lose their diagnostic value
under a compression transformation.

A. Transform Coding

One approach to image compression is the use of trans-
formations that operate on an image to produce a set of
coefficients. A simple, yet powerful class of transform coding
is linear block transform coding. Under this technique, an
image is subdivided into nonoverlapping blocks of n.xn pixels.
These image blocks can be considered as N-dimensional
vectors & with N = n x n. A linear transformation, which
can be represented as an M x N-dimensional matrix W with
M < N, is performed on each block with the M rows of
W, i, being the basis vectors of the transformation. The
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resulting M -dimensional coefficient vector ¢ for each image
block is calculated as

7=Wi. 1)

If the basis vectors uj; are orthonormal, then the inverse
transformation is the transpose of the forward transformation
matrix.

The optimal linear transformation with respect to min-
imizing the mean squared error (MSE) is the KLT. The
transformation matrix W consists of M rows of the eigenvec-
tors corresponding to the M largest eigenvalues of the sample
autocovariance matrix

¥ = E[#77]. (2

The KLT is related to principal components analysis (PCA),
since the basis vectors are also the M principal components of
the data. Because the KLT is an orthonormal transformation,
its inverse is simply its transpose.

A number of practical difficulties exist when trying to imple-
ment the KLT. While the calculation of the covariance estimate
and its eigendecomposition do not particularly tax even the
most commonly available computing resources today, the
algorithms used to do these computations are somewhat com-
plex and therefore not suitable for straightforward hardware
implementation. Further, the calculation of the covariance
estimate requires O(N?) calculations per training input. As
well, the calculation of the forward and inverse transforms is of
order O(M N) for each image block. Due to these difficulties,
fixed basis transforms such as the discrete cosine transform
(DCT) [9], which can be computed in order O(N log N}, are
typically used when implementing block transform schemes.
The Joint Photographics Expert Group (JPEG) have adopted
the linear block transform coding approach for its standard
using the DCT as the transformation [10].

Another solution to the problems associated with the calcu-
lation of the basis vectors through eigendecomposition of the
covariance estimate is the use of iterative techniques based on
neural network models. As the following section will show,
these approaches require less storage overhead and can be
more computationally efficient. As well, they may adapt over
long term variations in the image statistics.

B. Hebbian Learning

Recently, there has been a tremendous growth in interest
in neural networks. A neural network can be defined as “a
massively parallel distributed processor that has a natural
propensity for storing experiential knowledge and making it
available for use” [11]. One class of neural network learning
algorithms, which is of particular interest to the problem
of image compression, uses Hebbian learning to extract the
principal components from a data set. Since the principal
components are the basis vectors of the KLT, they can be
used to construct the optimal linear transform. In 1949, Hebb
proposed a mechanism whereby the synaptic strengths between
connecting neurons can be modified to effect learning in a
neuro-biological network [12]. Hebb’s postulate of learning
states that the ability of one neuron to cause the firing of
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Fig. 1. Simplified linear neuron.

another neuron increases when that neuron consistently takes
part in firing the other. In other words, when an input and
output neuron tend to fire at the same time, the connection
between the two is reinforced.

For artificial neural networks, the neural interactions can be
modeled as a simplified linear computational unit as shown
in Fig. 1. The output of the “neuron,” y, is the sum of the

inputs {z1, 2, -, zn} weighted by the “synaptic strengths”
{wi,2,-+,wn}, or in vector notation
y=wrz. (3)

Taking the input and output values to represent “firing rates,”
the application of Hebb’s postulate of learning to this model
would mean that a weight w; would be increased when both
values of x; and y are large. Extending this principle to
include simultaneous negative values (analogous to inhibitory
interactions in biological networks), the weights @ would be
modified according to the correlation between the input vector
Z and the output y. Oja derived a linear Hebbian learning rule
for such a simplified neuron model:

Wt + 1) = w(t) + a(y(t)E(t) — y* (1)) (4)

where t denotes the iteration number. It was shown that the
vector W converges to the first principal component of the
data under this learning rule [13].

Equation (4) has formed the foundation for extending Heb-
bian learning to simultaneously finding the first M principal
components. A simple extension would be to recursively
extract the principal components in order. The mth principal
component of {Z} can be extracted using (4) by removing
the previously computed components through deflation. The
recursive application of (4) combined with deflation on ¥
results in the computation of the mth principal component.
Other approaches have also been developed. Sanger [14]
extends the model to compute the M principal components
simultaneously by incorporating the deflation into the learning
rule. Kung and Diamantaras [15]-[17] propose a recursive
solution in which the output of the mth principal component
Ym can be calculated based on the previous m — 1 components
through the use of “anti-Hebbian” weights that impose the or-
thogonality condition. Chen and Liu [18] use a similar network
modified to extract M principal components simultaneously
from the training data as opposed to recursively. Another
approach, taken by Xu and Yuille [19], addresses the problem
of robustness in the estimation of the principal components by
weighting the training data according to the degree with which
each point deviates from the distribution of the training data.
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There are a number of advantages that these learning rules
have in calculating the M principal components from a data
set over standard eigendecomposition techniques. If M < N,
the iterative techniques can be more computationally efficient
[20]. As well, because of their iterative nature, they can be
allowed to adapt to slowly varying changes in the input data.
A third advantage is that no extra overhead is required to
store the data or its higher-order statistics such as the co-
variance matrix required for the standard eigendecomposition
techniques. Finally, if an extra basis were to be required, its
computation would be more efficiently performed using the
iterative learning rules.

III. ADAPTATION

A. Adaptive Processing

A major issue with many image processing applications
is their implicit assumption of stationarity. The fallacy of
this assumption is the reason why many image processing
techniques perform poorly in the vicinity of edges since
the image statistics around edges tend to be quite different
from the global statistics. Methods such as the KLT that are
globally optimal are, in effect, locally sub-optimal. Therefore,
if processes were made to adapt to local variations in an image,
their performance would improve.

To account for variations in the local statistics, a transforma-
tion must adapt locally. A transformation 7°(-) can be allowed
to vary by specifying a parameter set {2 such that §f = T (7). If
the parameter set were to vary according to the neighborhood
around a given data point, Nz , then the transformation can
be allowed to adapt to the characteristics of the surrounding
data. The transformation can then be represented as

¥ = Tan,(T). ®)

To simplify matters, the statistical variations can be
quantized into a finite number of classes. Image pixels
are then classified as belonging to one of the classes
{Cy,Cy,--,Ck} . There is a corresponding parameter set
Q = {0,Q,--,Qxk}, where each element ; describes
the characteristics of the corresponding class C;. The
transformation is then represented as

i = Tq, (),

It has been recognized for some time that the use of adap-
tation in coding can improve performance and there has been
a great deal of success in the use of adaptation for some types
of coding techniques [1], [21]-{23], [5]. In some of the earlier
work, the adaptation occurs in the quantization stage while
the transformation remains fixed [24], [25]. This approach has
also been explored in more recent work {26]. Adaptation has
also been applied to VQ methods [27}-[29]. However, in many
cases, adaptation has been applied in a rather ad hoc manner.
For example, “high-frequency” components may be coded
differently from “low-frequency” components. Alternatively,
edges of different orientations may be treated separately. In
some cases, the adaptation occurs in the quantization stage
while the transformation remains fixed. There has yet to be

recC; (6)
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a treatment of the optimality of the criterion upon which the
adaptation is based.

The use of classes for adaptation introduces a significant
measure of complexity to the process. To begin with, the
nature of the classification must be determined. This is not
a trivial matter. The classification criterion should somehow
be related to the nature of the transformation process. If the
classification is inappropriate, then the adaptation may not be
optimal. As well, the appropriate parameters for each class
must be determined. The parameters should be sufficient to
describe what makes a given class unique.

Instead of imposing a priori the classes for the adaptation,
the data itself should provide the information on how to ap-
propriately perform the segmentation. In such a self-organizing
approach, features of the data are used to compute a measure
of similarity between data points and each class. In a recursive
manner, similar data are grouped together in classes and the
resulting representation of each class is used to then reclassify
the data. The problem, of course, is how to determine the
appropriate features and measure of similarity, so that the
resultant classes form the basis for optimal adaptation.

B. Subspace Pattern Recognition

In many classical pattern recognition techniques, classes are
represented by prototypical feature vectors and class member-
ship is determined by some transformed Euclidean distance
between an input vector and the prototypes [30]. For example,
with the K-means and LBG vector quantization algorithms,
the classes are represented by their means and the vector to
class distance is the Euclidean distance between the class mean
and an input vector. The class boundaries form closed regions
within the input space.

Such class representations are not suitable for use with linear
transform coding techniques. If two input vectors were to
differ only by a scalar multiple and one of the vectors were
adequately represented by a set of basis vectors, then the same
set of bases would also adequately represent the other vector.
It would be appropriate, then, that the two vectors belonging to
the same class have the same transformation bases. However,
under a Euclidean distance-based classifier, the difference in
vector norm between the two vectors would mean that they
may belong to different classes. Therefore, a classification
scheme that is independent of the vector norm of the data
is required for adaptive linear transform coding. The linear
subspace classifier has this property.

In subspace pattern recognition, classes are represented as
linear subspaces within the original data space and the basis
vectors that define the subspace implicitly define the features
of the data set [20]. The classification of data is based on the
efficiency by which the subspace can represent the data as
measured by the norm of the projected data.

If the data ¥ € RY, and U € RM*" is an orthonormal
matrix with M < N, then the projector P is defined as

P=UTU @)
with projection of ¥ by P being
=PZ 8)

8]
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Fig. 2. Projection of ¥ by P on Sp.

The subspace Sp C RV is defined by
Sp={zZ7=PZ #cR"} ©)

and is spanned by the A N-dimensional row vectors of U .

To adequately represent the data, the subspace should match
the data as closely as possible. Referring to Fig. 2, this means
that the expected norm of the projected vector is maximized,
i.e., maximize

E]

P 7. (10)
Equivalently, the square of the norm of the residual ¥ = 7 —
is minimized, i.e., minimize

B3| = B[l - #17]. (11)

In other words, maximizing the expected norm of the projec-
tion is equivalent to finding the transformation that minimizes
the MSE. As stated earlier, the linear transformation that min-
imizes the MSE is the KLT. Therefore, the optimal subspace
for a data set is the space spanned by the eigenvectors corre-
sponding to the M largest eigenvalues of the data covariance
matrix, or equivalently, the M principal components of the
data.

For classification purposes, one can define a set of K classes
that are defined by K subspaces {S1,S2,..., Sk} Each
subspace S; is defined by its projector P ;, which can be
calculated using (7) with the rows of U being the M principal
components of the class data. Once the classes are defined, a
data vector I is assigned to the class under whose projection
its norm is maximized:

e if |Pid :m’éfcnpjfn. (12)
]:

Since the use of (12) results in classes whose membership
criterion is independent of the norm of the input data, it may be
used in an adaptive linear transform coding scheme. However,
without knowing a priori the required classes, their defining
projectors P ;, and their corresponding transformation bases,
a learning algorithm is required to extract the appropriate
parameters from the dataset.

IV. OPTIMALLY INTEGRATED ADAPTIVE LEARNING

A. OIAL Algorithm

A new class of unsupervised learning algorithms is proposed
that combines both principal components extraction and com-
petitive learning, and adapts to mixed data from a number
of distributions in a self-organizing fashion. The algorithms
produce an adaptive linear transformation that is optimal with
respect to minimizing the mean squared error between the
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input data and the decoded data. As such, they are particularly
well suited to the task of image compression.

The general form of the class of optimally integrated adap-
tive learning (OIAL) algorithms, which is a generalization of
that previously presented in [31], is as follows:

1) Initialize K transformation matrices {W 1, W o,
Wk}

2) For each training input vector Z:
a) classify the vector based on the subspace classifier

F€Ciif ||P | = max|| P, (13)
13

where P; = WTW,, and
b) update transform matrix W ; according to

W,=W,+aZ(@W,) (14)

where « is a learning parameter, and Z (Z, W ;) is
a learning rule that converges to the M prnincipal
components of {Z|Z € C;}.
3) Repeat for each training vector until the transformations
converge.

In the first step, some care must be taken in the choice
of the initial set of transformation matrices. They should
be representative of the distribution space of the training
data. If some of the W ;’s were to be initialized to values
corresponding to regions outside of the distribution space,
then they would never be used. Hence, the resulting partition
would be clearly suboptimal. There are a number of methods
to reduce the possibility of this occurring as described here:

* Arbitrarily partition the training set into K classes and
estimate the corresponding transformations using either
iterative learning rules or batch eigendecomposition.

* Use a single fixed-basis transformation such as the DCT
and add a small amount of random variation to each class
to produce a set of unique transformations.

 Use an estimate of the global principal components of the
data with a small amount of random variation added to
each class.

It is this latter approach that we have used in the experimental
section of this paper.

Algorithms based on the above outline will produce K
transformation matrices {W 1, W, ---, W g }. Given the ap-
propriate learning rule Z (#, W ;) in (14), each matrix will
converge to the KLT for that particular class of data. Since
the KLT minimizes the mean squared error, each W ; is
optimal for its class. The classification rule in (13) is equivalent
to finding the transformation that results in the minimum
squared error for the particular vector. The combination of
these two rules, therefore, produces the optimal set of linear
transformations for the resulting partition. Conversely, for the
resulting set of linear transformations, the partitioning of the
data is optimal with respect to minimizing the MSE.

Whether or not the resulting partitions are optimum raises
the following question: has the algorithm converged to the
global minimum or a local minimum in the energy surface?
The energy surface for the OIAL, because of its nonlinear
nature, can be quite complex. Like other nonlinear networks,
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the proof of convergence to a global minimum may not be
mathematically tractable [11]. However, in all the experience
the authors have had with the algorithm on “real” data, the
algorithm has consistently converged to a satisfactory result
every time.

Since there exists a number of learning rules that compute
the A/ principal components of a data set, the choice of
Z (&, W ;) will depend on the desired computational efficiency
and convergence properties. Whether the learning rule used
is the linear Hebbian rule of (4) with recursive calculation
of the M principal components, or the others mentioned in
Section II-B, [14]-[16], [32], [18], [19], the resulting set of
transformations would be the same. In fact, if the algorithm
were implemented in a batch mode, the explicit calculation of
the eigenvectors of the class covariance matrices would also
produce the same transformation bases.

It is also interesting to note that the convergence of the
transformation matrices to the M principal components of
the class data implies optimality but not vice versa. Any
orthonormal transformation whose basis vectors span the space
defined by the principal components is optimal. For the
subspace classifier, the projector F”; would be identical and
the performance of the coding and decoding transformations
in terms of MSE would also remain unchanged. Therefore,
the use of learning rules based on auto-associative backprop-
agation as proposed by Cottrell [33], [34] or linear gradient
descent methods like that proposed by Russo and Real [35]
would also result in an optimal set of transformations.

Since the purpose of this paper is to demonstrate the validity
of this technique, the choice of learning rule can be rather
arbitrary. At this point, no attempt has been made to evaluate
the characteristics of the various learning rules to determine the
most appropriate one. Such an evaluation is left for future re-
search. The rule chosen for our present study is the Generalized
Hebbian Algorithm (GHA) devised by Sanger [14].

B. System Architecture

Fig. 3 shows the modular architecture for the coding stage
of the system. The system consists of a number of independent
modules whose outputs are mediated by the subspace classifier.
Each module consists of M basis images of dimension n X nt
that defines a single linear transformation. The inner product
of each basis image with the input image block results in
M coefficients per module, represented as an M -dimensional
vector 7;. Each module corresponds to one class of input data.
The choice of class and therefore the coefficient vector to be
transmitted along with its class index is determined by the
subspace classifier. The selection is based on the class whose
projected vector norm [|Z;|| is maximum. The projected vector
&; is calculated by taking the inverse transformation of the
coefficient vector.

The message is decoded using the same set of transforma-
tions. The class index is used to choose the class for the inverse
transformation and the resulting reconstructed image block #
is calculated.

The system efficiently represents both the linear trans-
formation and the classification criterion. The same set of
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Fig. 3. Modular system architecture of OIAL. Input are blocks of n X n
pixels. The K transformations W, consist of M basis images of size n X n
and output an M -dimensional vector ¥:; . The coefficient vector to be sent
is chosen by the subspace classifier based on the maximum norm of the
projected vector ||T;]| .

bases is used to calculate the coefficients for coding and the
reconstructed image block for decoding. As well, they define
the module’s class through the linear subspace they span.
Therefore, the system requires no extra overhead in terms of
information required to effect the adaptation.

V. COMPRESSION

A. Method

To evaluate the performance of the optimally integrated
adaptive learning class of algorithms, a set of experiments
were performed. As mentioned in Section IV-A, the learning
rule chosen was the GHA. The learning parameter « in (14)
for the ith component at iteration & was calculated as

(15)

k —1
(k) = (z w’“"y?)
1=0

from [16] where -y is analogous to the “forgetting factor” in the
adaptive recursive least squares (RLS) algorithm [36]. For the
results presented herein, v was chosen to be v = 0.995. The
set of transformation were initialized to an estimate of the M
global principal components with a small amount of random
noise (e.g., ¢ = 0.001) added to each set of transformations.
Fig. 4 shows the magnetic resonance image (MRI) used for
training. The image in Fig. 5 was the adjacent section from
the same study (patient) and was used for testing. Each image
consists of 256 x 256 pixels with the dynamic range of 8 bits or
256 gray levels. The training image was divided into blocks of
8x 8 pixels for an input dimension of N = 64. The blocks were
overlapped at two pixel intervals for a total number of training
samples of 15 625. During training, the samples were presented
in random order. A number of system configurations were
evaluated. Both the number of coefficients, M, and the number
of classes, K, were varied. For comparison, the KLT transfor-
mation was also calculated based on the same training data.
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Fig. 4. MR image for training.

Fig. 5. MR image for testing.

A typical learning curve for a system with 4 coefficients
and 128 classes is shown in Fig. 6. Each point represents
an average MSE over 10 samples to reduce the block-to-
block variation in MSE. The curve shows that within 5000
iterations, the system has formed a sufficient representation
of the data to reduce the MSE by approximately one third.
The remaining iterations essentially fine tune the system. The
ensemble average over 100 such learning curves is shown in
Fig. 7. The same set of initial transformation matrices was
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Fig. 6. Typical learning curve for system with four coefficients and 128
classes.
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Fig. 7. Ensemble average of 100 learning curves.

used in each training run but the order in which the data were
presented varied. This curve shows that the network typically
achieves convergence by three to four iterations through the
entire training set for this configuration.

The test image was divided into 8 x 8 nonoverlapping
blocks. These blocks were transformed by the previously
computed system into a set of coefficients, quantized, and
then transformed back into image blocks. Three bit rates were
used in the quantization step: 0.625 bits per pixel (b/p) for
a compression ratio of 12.8:1, 0.5 b/p for a 16:1 ratio and
0.375 b/p for a ratio of 21.33:1. These bit rates included
the side information necessary for each block to convey
its class membership. The coding of class information was
not optimized. The optimal nonuniform Max quantizer was
used with the first coefficient being modeled as a uniform
distribution and the others as Laplacians. The estimate of the
variances for each coefficient was taken from the training
data. Each class was allocated the same number of bits per
image block. For both the adaptive approach and the KLT, the
number of bits per coefficient were optimally assigned so as
to minimize the quantization error [9]. For the KLT, this bit
allocation resulted in only a subset of the 64 coefficients for
each 8 x 8 block having nonzero values after quantization. For
example, the 0.5 b/p case used only eight coefficients.
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TABLE 1
CODING DISTORTION FOR Various OIAL SysSTeM
CONFIGURATIONS AS COMPARED WITH KLT
No. No. MSE
Coef. Class 0.625 bpp 0.5 bpp 0.375 bpp
2 64 95.90  95.90 95.90
2 128 8291 8291 82.91
2 256 78.22  78.22 78.22
2 512 70.07  70.07 70.10
4 16 74.85  74.97 81.67
4 32 64.11  64.49 75.91
4 64 58.86  50.50 73.10
4 128 53.72  54.44 71.58
8 16 4780  67.83 118.10
8 32 45.10  65.15 115.17
8 64 4470 66.60 122.14
8 128 4832 7232 125.57
KLT:
7892  98.60 135.48
B. Results

Table I shows the MSE for the OIAL algorithm for coding
rates of 0.625, 0.5, and 0.375 bits per pixel. Also shown is the
MSE for the KLT for the same bit rates.

For most OIAL system configurations as shown in Table
I, the use of adaptation has resulted in a reduction in mean
squared error over the nonadaptive KLT. When the number of
coefficients is small (e.g., 2), there is an improvement for high
compression ratios, but for some cases at lower compression,
there is a reduction in performance. In these cases, the number
of coefficients is inadequate to sufficiently represent each class.
As the number of coefficients increases, the mean squared error
decreases as shown by comparing the results for two and four
coefficients. However, there is a limit to the improvement
realized through increasing the number of coefficients alone
because of the resulting increase in quantization error. For
example, at both 0.5 b/p and 0.375 b/p, doubling the number
of coefficients from 4 to 8 for the same number of classes, 128,
increases the mean squared error since fewer bits are available
to code the coefficient values.

When the number of coefficients is fixed, (e.g., at 4),
increasing the number of classes can improve performance.
Since the degree of adaptivity is directly related to the number
of classes, this decrease in MSE clearly demonstrates the
advantage of using a locally adaptive coding scheme over a
nonadaptive method. Again, there is a limit to the number
of classes that can be used. When the number of coefficients
is 8, an increase in the number of classes actually decreases
performance at higher compression ratios. In this case, the
resulting increase in the number of bits required to represent
the class membership information decreases the number of bits
remaining to represent the coefficient values. This results in
an increase in quantization error.

Fig. 8 shows the distortion versus compression ratio calcu-
lated from the test data for the KLT and OIAL compression
methods. For the OIAL data, the system configuration that re-
sults in the minimum squared error value for each compression
ratio is used in the comparison. For the same coding rate, the
use of OIAL decreases the MSE by 40-50% over the KLT.
If the acceptable distortion was fixed at a MSE of 60, for
example, the compression ratio could be improved from 10:1
for the KLT to 19:1 for the OIAL.
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Fig. 8. Distortion versus compression ratio for OIAL and KLT compression.

Fig. 9. Details of OIAL coding with 128 classes, four coefficients per block,
at 0.5 b/p.

Although performance measures based on squared error
provide a quantitative measure of performance and are easily
computed, they are no substitute for a qualitative comparison.
Fig. 9 shows details of the resulting image for a coding rate of
0.5 b/p using the OIAL algorithm with four coefficients and
128 classes. For comparison, Fig. 10 shows the corresponding
details using the KLT at the same rate of 0.5 b/p. When
examining the detailed structure of the two images, it is clear
that the OIAL image preserves more features than the KLT
image. In the upper forehead region near the skull, the dark
line of the outer table of the skull between the outer white
line of the skin and the white line of the diplo€ is visible in
the former, but completely obscured in the latter. The same is
true of the detail in the top portion of the orbit. Not only does
the KLT lose information, it also introduces texture variations
in the brain tissue that are not present in the original nor in
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Fig. 10. Details of KLT coding at 0.5 b/p.

the OIAL image. This texture also interferes with the visibility
of the folds in the outer portion of the brain. Generally, the
boundaries of the image blocks are far more pronounced in the
KLT image than in the OIAL image. Although techniques exist
that can reduce the block effects for block transform coding
methods, they were not used so that the differences between
the two methods are more clearly shown.

C. Generalization

As stated above, the claims of optimality are only valid for
the class of images having similar statistical characteristics as
the training data. For testing purposes, we have trained and
tested on similar images, namely adjacent sagittal head MRI
scans of a single patient. While the general form of the two
images is similar, at the block level there are significant dif-
ferences. The promising results presented above are therefore
a good indication that the network generalizes well within that
particular class of image. That is, its performance is similar
for images outside the training set but within the defined class.

While the “within class condition” may seem restrictive at
first, in practice this would not be so. If the encoder and
decoder both had a common set of networks, one for each class
of images, then the appropriate network would be used by both
the encoder and decoder depending on the type of image. For
example, in a radiological application there could be separate
networks for the various study types, e.g., head MRI, body
CT, chest x-ray, etc. Because each network generalizes well
within its class of image, there is no need to transmit or store
a unique network for each particular image.

While we do not claim that there exists a single network
configuration that would perform well as a general-purpose
image compression scheme across a wide variety of images, it
is interesting, nevertheless, to see how well a system trained on
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Fig. 11. Lenna image for testing generalization.

one type of image generalizes outside that image type. Fig. 11
shows the Lenna image, which is obviously quite different
from the image used for training as shown in Fig. 4. Fig. 12
shows the resulting compressed image using the same network
(four coefficients and 128 classes) and bit rate (0.5 b/p) as that
used for the image shown in Fig. 9. The MSE for this image
is 54.9. For comparison, the image was compressed using the
KLT of itself and quantized to the same number of bits (eight
coefficients with 0.5 b/p). The resulting image is shown in
Fig. 13 and has a MSE of 71.0. These two images clearly show
that the OIAL system trained on a head MR image performs
better than the KLT optimized for the specific image being
coded. As with Figs. 9 and 10, the use of OIAL coding results
in less noticeable block effects and better edge preservation.
In addition, the OIAL method preserves more texture detail,
which is particularly noticeable in the feather and the hat band.

V1. SEGMENTATION

A. Image Formation Model

One very useful property from an image processing per-
spective of the subspace method of classification is that the
classification is independent of the norm of the data vector &,
i.e., for any scalar multiple «, if £ € C; then oZ € C;. This
is a significant property because it is known that the image
formation process can be modeled as a multiplicative process

{371
L(z,y) = E(z,y)p(z,y) (16)

where L is the luminance of the formed image, E is the
illumination falling on a scene, and p is the reflectance. A
similar model is valid for images formed via transmission
as well as reflection. If the illumination were to vary much
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Fig. 12. Lenna image with OIAL coding, 128 classes, four coefficients per
block, 0.5 b/p.

more slowly than the reflectance, a valid assumption for most
images, then for a small neighborhood N(z,y), (16) can be
rewritten as

Typically, the goal in image analysis is to determine charac-
teristics about the underlying physical properties of the scene
being imaged. These are inferred from the reflectivity of the
scene. Therefore, it is the reflectivity that conveys the infor-
mation about the scene, and any variations in the illumination
can be considered as noise. This is the justification for a class
of image processing called “homomorphic processing” [38].

Using vector notation to represent the luminance values of
a set of neighboring pixels as 7, the image of one region, or
feature, is formed as

T = Eypy (18)

which is the vector equivalent of (17). If the same feature,
having the same reflectance, p;, were to appear elsewhere
under different illumination conditions, E,, its image would
be T2 = E»p}. If some image analysis process were performed
on these image vectors, one would expect the same result since
both #; and #; were created by the same underlying feature
p1. For many classical pattern recognition approaches, this
would not be the case since they use scale-dependent metrics
like Fuclidean distance. For example, in vector quantization,
Euclidean distance is used to measure the distance between
input vectors and the codewords. As a result, the distance
between ¥, and Z> may be quite large and result in the
codeword representations of the two vectors being different.
Subspace methods, however, would treat the two vectors
identically since they would both project to the same subspace
independently of the illumination values E; and FEs. It could
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Fig. 13. Lenna image with KLT coding, 0.5 b/p.

be argued, then, that subspace methods act directly on the
physical properties of the objects being imaged rather than
indirectly on the illumination dependent image.

Illumination independence is a very important characteristic
of the human visual system [39]. We have no problem in
recognizing that the retinal images formed by the same object
under a wide range of illumination conditions do in fact
correspond to the same object. It would be very hard indeed
for us to function as we do if our visual system did not behave
in such a manner. So, for an artificial system processing image
data, such independence on variations in illumination would
be similarly advantageous. The linear subspace classifier has
exactly this property.

B. Class Representation

As shown in Section III-B, the optimal representation of
a class in terms of maximizing the “within class similarity”
is the subspace spanned by the M principal components of
the class data. With labeled data, the eigenvectors of the
class covariance matrices can be calculated and used to form
the projection matrices defining the linear subspaces for each
class. Similarly, iterative techniques such as those based on
Hebbian learning can also be used to calculate the principal
components. Alternatively, linear minimization methods such
as gradient descent can be used to find the optimal projection
matrix without the explicit calculation of the eigenvectors.

Without labeled data, the problem of determining the ap-
propriate classes and their respective linear subspaces is akin
to the problem of clustering in classical pattern recognition
theory. The OIAL class of learning algorithms as introduced
in Section IV-A produces an optimal set of classes in a com-
pletely self-organizing manner. The resulting set of weights
can be used to classify data outside of the training set.
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In some applications, it may be advantageous to have
some similarity between “neighboring” classes. Kohonen [40]
introduced the concept of classes ordered in a “topological
map” of features. In many clustering algorithms such as K-
means or OIAL, each input vector Z is classified and only
the “winning” class is modified during each iteration. In
Kohonen’s self-organizing feature map (SOFM), the vector
Z is used to update not only the winning class, but also
its neighboring classes. Each training vector & is classified
according to the minimum Euclidean distance between it and
the set of class feature vectors {m;}. The feature vectors
of winning class and its neighboring classes are modified
according to their respective vector differences with the input
vector. The neighborhood of a class is defined according to
some distance measure on a topological ordering of the classes.
For example, if the classes were ordered on a 2-D square grid,
the neighborhood of a class could be defined as the set of
classes whose Euclidean distances from the class are less than
some specified threshold. Initially, the neighborhood may be
quite large during training, e.g., half the number of classes or
more. As the training progresses, the size of the neighborhood
shrinks until, eventually, it only includes the one class. During
training, the learning parameter « also shrinks.

C. Self-Organizing Segmentor

The concept of topologically ordered classes can be incor-
porated into the OIAL class of algorithms. Referring to the
algorithm presented in Section IV-A, the step for updating the
transformation bases (namely (14)), can be modified to

W, = {W’ i+ oZ (T, W j), C; € Ng, (19)

I/Vj, C] g JTV(,'I.

where C; is the winning class according to the classification
rule of (13), and N, is the set of classes that are in the
neighborhood of class C;.

As with Kohonen’s network, we start with a large neigh-
borhood initially. The large neighborhood size allows each
class to be affected by a large number of training data vectors.
Since the data would be fairly representative of the entire
training set, each class will begin to converge to the globally
optimal representation of the data, irrespective of the initial
conditions. This helps reduce the possibility of the initial
conditions allowing null classes to form. Null classes can form
when some initial class representations fall outside the range
of the possible data values. As the neighborhood size shrinks,
the globalizing effect reduces and the differences among the
classes become enhanced. Connected groups of classes become
tuned to the variations within the data set as the training data
have a more regional effect on the topology. The effect of
individual data points becomes more and more localized until,
eventually, each training data point updates only one class.
The result is a set of classes in which the similarity between
classes is correlated with the distance between them.

Another advantage of such a topological arrangement is the
ease with which new classes can be incorporated within an
existing set of transformations. A new class can be added by
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inserting it between two existing classes and initializing it to
the union of the neighboring classes. Unlike other techniques
that increase the number of classes by splitting existing classes,
this technique preserves the existing classes when new classes
are added. In addition, it removes the problem of how best to
split an existing class.

D. Results

A simple topology appropriate for this investigation is a
linear arrangement in which the distance between two classes
is simply the absolute value of the difference between the class
indices. To avoid discontinuities in the topology at the ends,
a circular topology could be used where the first and final
classes are adjacent. It is this circular arrangement that is used
for the following investigation.

A system consisting of 32 classes with two coefficients per
class was trained with the training data described in Section
V-A using the updating rule of the self-organizing segmentor,
(19). The initial neighborhood size was 3/4 the size of the
entire system or 24 classes. The size of the neighborhood
decreased by two classes for each iteration through the training
set.

Once the system was trained, it was used to segment the test
image of Fig. 5. The segmentation was performed by taking
the surrounding 8 x 8 block for each pixel in the image,
classifying the block, and replacing the central pixel by the
resulting clads value. Since the class topology was circular,
the class values were coded by color with the color of a class
¢ being the hue at an angle of i/K x 360° on a color circle,
where K is the total number of classes that in this case is
K = 32. The intensities were weighted by the value of the
second coefficient for each block. Fig. 14 shows the resulting
class map.

The figure clearly shows the preference of the segmentor for
edge and line features. In most areas of the image, it is acting
as either an edge or line detector. The edges around the skull,
the orbit, and sinus cavity are dramatically shown. This is a
rather interesting result as no a priori conditions were imposed
as to what features were important in the image. In the human
visual system, edges and lines are two of the primary features
used to construct higher-order representations of scenes [41].
Even when one looks at the images in Figs. 4 and 5, the
areas to which one’s attention is initially drawn corresponds
to areas that the segmentation network has represented as
being important, namely, edges and lines. This extraction of
important features was accomplished entirely through a self-
organizing mechanism.

The continuity of the color transitions shows the high degree
of similarity between neighboring classes. Since the class
indices were coded as a spectrum of colors, similar colors
indicate similar classes. Starting at the base of the skull in
the lower left of the image and going around the skull in
an anti-clockwise direction, the colors progress from green
to yellow, orange, to red, to violet at the top of the skull, to
blue, and finally back to green at the forehead. Throughout the
image, too, features with the same orientations are consistently
segmented with the same class. For example, the horizontal
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Fig. 14. Segmentation map of test image with 32 classes, two coefficients per class. Color indicates class membership, intensity is weighted by value

of the second coefficient for each block.

features around the top and bottom of the orbit are mapped
to the same classes as the horizontal features at the top of the
skull.

Fig. 15 shows the second coefficient basis images of the
system. Since the first coefficient in every class is approx-
imately the dc component, they were not shown. The basis
images were color coded to match the class assignments
shown in Fig. 14. Again, this figure clearly shows the high
degree of similarity between adjacent classes. Bases with
similar directional sensitivities tend to be near each other. The
sequence of the basis images shows how the orientations of
the classes progress through 180°. Thi: :rrangement of feature
orientations is remarkably similar to the way in which the
visual cortex is arranged.

In a classic set of experiments, Hubel and Wiesel recorded
the response of neurons in the mammalian visual cortex to
a variety of optical stimuli using microelectrodes [42]. They
found that groups of neurons arranged in columns responded
only to very specific stimuli. In particular, a column would
only respond when the eye was presented with lines of a par-
ticular orientation. If the angle varied even slightly, the column
of cells would stop firing. In terms of the spatial organization
of these columns, it was found that the angle of sensitivity

differed only slightly (about 10°) between adjacent columns.
Further, as the electrode was moved along, the direction of
change in the angle, either positive or negative, remained the
same. This continuity of change in angle sensitivity persisted,
in some cases, up to 270° along a line of columns.

Referring to Fig. 15, the above characteristics of the visual
cortex are mimicked by the set of bases. Each basis image
is, in effect, a feature detector. The features corresponding to
the bases are either lines or edges of a specific orientation.
When comparing adjacent classes, the angles of the features
are similar. As well, the angles change in a somewhat regular
manner as the class number progresses.

It is also interesting to note the distribution of the orien-
tations in the basis set. The training image shown in Fig. 4
contains more vertical and diagonal features than horizontal
ones. This nonuniform distribution of orientations is reflected
in the basis set. Most of the basis images have either a vertical
or diagonal orientation. Only a few correspond to horizontally
oriented features.

VIL. DISCUSSION AND CONCLUSIONS

A new approach to adaptive compression is proposed in
this paper, based on an optimally integrated adaptive learning



DONY AND HAYKIN: OPTIMALLY ADAPTIVE TRANSFORM CODING

1369

Fig. 15. Map of second coefficient basis images for 32-class, two-coefficient network. The class number progresses left to right, top to bottom.

(OIAL) class of algorithms. The architecture for such a system
consists of a number of modules, each consisting of a number
of basis images. Each module corresponds to a class of input
data and performs a linear transformation on its class data
using the bases. Not only do the basis images specify the linear
transformations, but they also define the classes by way of the
linear subspaces in the input space that each set of bases forms.
The system is trained by combining a subspace classifier to
identify the appropriate class module and a recursive learning
rule that extracts the principal components from the data.
Since a transformation whose bases are the A principal
components is the minimum MSE linear transformation for
compression and the use of the subspace classification method
produces the minimum MSE classification, the network will
converge to an optimal state in which the overall MSE is
minimized.

The new method addresses some of the deficiencies with
current image compression techniques. It has been realized
for some time that image processing methods must take
into account the mixture of the various region types found
within images. Techniques based on global measures of op-
timality will not perform well on a local level. Therefore,
processes must adapt to such local variations. While identify-
ing the need for adaptation, there has been a lack of rigorous
treatment of the optimality of the adaptation criteria. The
following characteristics of the OIAL approach address this
concern:

» The adaptation is optimal, since both the transformation
and the classification result in a minimum MSE represen-
tation of the data.

+ The adaptation of the system during training is self-
organizing. No assumptions about the importance or
relationships of the various regions within an image are
imposed beforehand.

* The adaptation is on a microscopic scale. It responds
to variations on a block-to-block basis. Other adaptive
techniques respond to slowly varying changes over a large
number of data points.

¢ The adaptation criterion is efficiently represented by the
system architecture, since each set of basis images serves
the dual purpose of defining both the linear transformation
and the class representation.

¢ The adaptation and resulting representation are indepen-

dent of variations in illumination over an image since the
subspace classifier is insensitive to the vector norm of
the data.

The results presented herein have shown that the new
method can outperform the globally optimal linear transform.
The same image was coded at the same compression ratio
using both the KLT and the new approach. For the new
approach, the MSE was reduced and the image quality was
improved. Also, more image details were preserved and fewer
artifacts were introduced.

The use of the new method as a segmentor has great
potential. In the results presented in Section VI, the system
extracted perceptually important features from the test image
in a completely self-organizing fashion. The classification of
similar features was consistent across the entire test image. The
use of a topological ordering of the classes during training
resulted in similar classes being close together in a manner
analogous to the ordering of directionally sensitive columns
in the visual cortex.

While most of the results in this paper have been restricted
to one particular imaging mode, namely, MRI, there is nothing
to suggest that there should not be similar improvements for
images from other classes. As long as both the training and test
data come from the same population of images with similar
distributions of data, similar results should be attained. The
optimality of the adaptation mechanism means that the use of
this technique will result in a minimum mean squared error
distortion.
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