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Nonlinear Adaptive Prediction
of Nonstationary Signals

Simon Haykin, Fellow, IEEE, and Liang Li

Abstract—In this paper, we describe a computationally efficient
scheme for the nonlinear adaptive prediction of nonstationary
signals whose generation is governed by a nonlinear dynamical
mechanism. The complete predictor consists of two subsections:
One performs a nonlinear mapping from the input space to an
intermediate space with the aim of linearizing the input signal,
and the other performs a linear mapping from the new space to
the output space. The nonlinear subsection consists of a pipelined
recurrent neural network (PRNN), and the linear section consists
of a conventional tapped-delay-line (TDL) filter. The nonlinear
adaptive predictor described herein is of general application. The
dynamic behavior of the predictor is demonstrated for the case of
a speech signal; for this application, it is shown that the nonlinear
adaptive predictor outperforms the traditional linear adaptive
scheme in a significant way.

1. INTRODUCTION

HE prediction of a time series is synonymous with mod-

eling of the underlying physical mechanism responsible
for its generation. Many of the physical signals encountered in
practice exhibit two distinct characteristics: nonlinearity, and
nonstationary. Consider, for example, the important case of
speech signals. It is well known that the use of prediction
plays a key role in the modeling and coding of speech
signals [1]. The production of a speech signal is known to
be the result of a dynamic process that is both nonlinear
and nonstationary. To deal with the nonstationary nature of
speech signals, the customary practice is to invoke the use of
adaptive filtering. However, the nonlinear nature of the speech
production process has not received the attention it deserves in
that much of the literature on the prediction of speech signals
has focused almost exclusively on the use of linear adaptive
filtering schemes [2]. Yet, one of the classic papers written by
Gabor [3] on a learning machine for the adaptive prediction
of speech signals over 30 years ago emphasized the use of
nonlinear processing, exemplified by what we now refer to as
the Volterra series.

A neural network is well suited for the nonlinear prediction
of nonstationary signals by virtue of the distributed nonlinear-
ity built into its design and the ability of the network to learn
from its environment. The key question is how to design such a
network for the nonlinear prediction of nonstationary signals.
The traditional method of supervised learning is unsuitable
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because of its off-line training requirement. What we need is
a neural network that is able to learn in an on-line fashion,
that is, on the fly, in which case, the network learmns to adapt
to statistical variations of the incoming time series while
performing its filtering role at the same time. This form of
learning, which is referred to as in-situ learning or continuous
learning, can indeed be a difficult task. In this paper, we
describe a computationally efficient neural network for the
nonlinear adaptive prediction of nonstationary signals [4] and
demonstrate its application to a speech signal. It should,
however, be emphasized that the network has a much wider
range of applications such as system identification, adaptive
equalization, and adaptive noise cancellation. We have chosen
the case of speech signals in this paper merely as a case study.
An early version of the new neural network was first described
in [5].

The paper is organized in the following manner. In Section
II, we present motivation for the new neural network. The
structure of the network is both modular and recurrent, the
formulation of which is motivated by the principle of divide
and conquer. In Section 1II, we present a detailed description of
the network used, in conjunction with a conventional tapped-
delay line filter, as a one-step predictor; the algorithmic design
of the network is summarized in an appendix at the end of the
paper. In Section IV, we present an experimental study of the
new network applied to the prediction of a speech signal. This
is followed by a comparison of the network’s performance
with that of two single sections: a) linear predictor of finite-
duration impulse response and b) conventional recurrent neural
network. The paper concludes with some final remarks in
Section V.

II. MOTIVATION

In the introductory section, we emphasized the need for con-
tinuous learning when the task at hand involves the adaptive
nonlinear prediction of a nonstationary time series (e.g., speech
signal). A learning algorithm that is well suited for such a task
is the so-called real-time recurrent learning (RTRL) algorithm
described by Williams and Zipser [6], aspects of which may
be traced back to McBride and Narendra [7]. This algorithm is
used to train a fully connected recurrent network in which the
output signals of the output neurons and the hidden neurons
are all fed back to the input layer. Important advantages of the
RTRL algorithm include the following:

» The algorithm is capable of nonlinear adaptive filtering

of nonstationary signals.
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« The algorithm does not require a priori knowledge of
time dependences among the input data.

" However, a major limitation of the RTRL algorithm is that
its computational complexity increases as O(N*), where N
is the total number of neurons in the network. When the
learning task of interest is a difficult one, N may assume
a large value making the computational requirements of the
algorithm unacceptable. Indeed, this is_the sole reason that
has hindered large-scale applications of the RTRL algorithm
in its conventional form.

In this paper, we describe a pipelined recurrent neural
network (PRNN), the algorithmic design of which builds on
the RTRL algorithm. The new network is so called because of
its modular and recurrent structure. It is the modularity of the
network that helps us contain the computational complexity of
the RTRL algorithm, as will be explained later.

The design of the new network structure follows an impor-
tant engineering principle, namely, the principle of divide and
conquer, which may be stated as follows:

Linear

y(n) Subsection Sn+1)

Block diagram of the new nonlinear adaptive filter.

Fig. 1.
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+ To solve a complex problem, break it into a number of
simpler problems.

According to Van Essen et al. [8], this same principle is also
reflected in the design of the brain, as summarized here in the
context of the primate visual system:

+ Separate modules are created for different subtasks, per-
mitting the neural architecture to be optimized for partic-
ular types of computation.

« The same module is replicated several times over.

« A coordinated and efficient flow of information is main-
tained between the modules.

Modularity, as an important principle of learning, is also
emphasized by Houk [9] and other investigators. Now, in a
loose sense, all three elements of the principle of divide and
conquer, viewed in a biological context, feature in the PRNN,
as explained here:

« The PRNN is composed of M modules, each of which
is designed to perform nonlinear adaptive filtering on an
appropriately delayed version of the input signal vector.

« The M modules of the PRNN are identical, and each is
designed as a fully connected recurrent network with a
single output neuron.

« Information flow into and out of the modules proceeds in

a synchronized fashion.

III. NONLINEAR ADAPTIVE PREDICTOR

A. Principle of Operation
Fig. 1 shows a block diagram of the complete nonlinear
adaptive filtering system. The PRNN, consisting of many
levels of recurrent signal processing, constitutes the nonlinear
subsection of the system. In addition, the system includes
a linear subsection represented by a conventional tapped-
delay-line (TDL) filter. These two subsections perform distinct

functions of their own, as illustrated in Fig. 2:
+ The PRNN performs a nonlinear mapping from the input
space to an intermediate space with the aim of linearizing

Intermediate

(b)

Fig. 2.
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the input signal. It does so by filtering a set of samples
of the input signal s(t), which are represented by s(n),
s(n — 1), s(n — 2),---. These samples extend into the
“infinite past” for varying discrete-time n by virtue of
the feedback built into the design of each module of the
PRNN. Thus, the PRNN has infinite memory of a fading
nature.
The TDL filter performs a linear mapping from the new
intermediate space to the output space. Specifically, it
uses a linear combination of the samples y(n) y(n —
1), --,y(n—g+1) derived from the output of the PRNN
to produce a prediction §(n + 1) of the original signal one
step into the future. In contrast with the PRNN, the TDL
filter has finite memory.
Both of these operations are performed adaptively on a con-
tinuous basis. Thus, the cascade combination of the PRNN
and the TDL filter may be used to perform nonlinear adaptive
prediction of a nonstationary signal.

B. Nonlinear Subsection

A detailed structure of the PRNN is shown in Fig. 3,
involving a total of M levels of processing. Each level has
a neural module and a comparator of its own. Every module
is a dynamical submodel of the outside world. Specifically, the
module consists of a fully connected recurrent neural network
with N neurons. Fig. 4 shows the detailed structure of module
i. In addition to the p external inputs, there are V feedback
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Fig. 3. Nonlinear subsection: A pipelined recurrent neural network.
signals. To accommodate a bias for each neuron, besides the =~ s,
p + N inputs, we have included one other input whose value  s@-i) —
is always maintained at +1. Each module has N—1 outputs
fed back to its input, and the remaining output is applied s@sl) —
directly to the next module. In the case of module M, a one-
unit delayed version of the module’s output is also fed back . M 3@
to the input. Thus, all the modules operate similarly in that
they all have exactly the same number of external inputs and * e v
feedback signals, which are properly timed. Moreover, all the  gn-gap-1))
modules of the PRNN are designed to have exactly the same S *
synaptic weight matrix. ) _ . .
The activation function of every neuron in each module is ‘ - ¥,
a sigmoidal function described by the logistic function [10] e
1 w7
Yik(n) = ¢(vi(n)) = T+ ep(—virm)’ Lo
i=1,---,\M; k=1,---N (1 |
T
where v; ,(n) is the net internal activation of the kth neuron,  *
and y; (n) is the output of the kth neuron, both referring to

the i¢th module at the nth time point.

Let W denote the (p+ N + 1)-by-N synaptic weight matrix
for each module. An element wy; of this matrix represents the
weight of the connection to the kth neuron from the /th input
node. The weight matrix W may thus be written as

=[w17"'7wk1"'7wN] (2)
where wy; is a (p + N + 1)-by-1 vector defined by
Wi = [Wk,1, W2, s Wept N41) T 3)

The superscript T’ denotes transposition.
Suppose now that we are given a time series consisting of
the observation samples s(1), s(2),---, s(n), referring to an

Fig. 4. Detailed construction of level ¢ of the PRNN.

input signal s(t). At the nth time point, the external input
applied to module ¢ is described by the p-by-1 vector

8i(n) = [s(n=1i),s(n—(i+1)),--, s(n=(i+p=1)]" @)
where p is the nonlinear prediction order. The other input

vector applied to module 7 is the N-by-1 feedback vector

ri(n) | )

As mentioned previously, each neuron also has a fixed input
of +1, applying an adjustable bias to its activation function.

= [ri1(n),ri2(n),- -+, ri n{(n)
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y(n) y(n-1)

Fig. 5. Linear subsection: Tapped-delay-line filter.

At the nth time point, the output y; »(n) of neuron & in
module 7 is described by

Yi,k(n) = (vixk(n)) ©)
P
vik(n) = Zwk,ls(n —(i+1-1))+ wrps1
=1
PN+
+ Z W73 1 (p+1) (1) @)

l=p+2

where the weight wy .1 represents the adjustable bias; the
index1=1,2,.--, M,and k=1,2,---, N..

The “feedback” signals of module ¢ consist of the first
neuron’s output in the adjacent module i + 1 and the one-
step delayed output signals of neurons 2, .-, N in module
¢ that are fed back to itself. We may thus define the N-by-1
feedback vector r;(n) of the ith module as

ri(n) = [yi+1,1(n), ri(n)]”

=[Yir1,1(n), gi2(n = 1), g (n — DT,

i=1,---,M-1 ®)
where r(n) denotes those feedback signals that originate from
module ¢ itself. The last module of the PRNN, namely, module
. M, operates as a standard fully connected recurrent neural
network [10]. The vector y,,(n), consisting of the outputs of
the output neuron and all hidden neurons in this module, is
fed back to itself as the feedback signal vector after a delay
of one time unit, as shown by

ru{n) =yp(n—1). )

The prediction computed by the PRNN at time n is defined by
the output of the visible (first) neuron of module 1 as shown by

ypred(") =y11(n) (10)
The nonlinearity responsible for this computation is of a

“nested” kind that characterizes the way in which the M
modules of the PRNN are chained together. Table I is a
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TABLE 1

SUMMARY OF THE INPUTS AND QUTPUTS OF THE MODULES IN THE PIPELINED
RECURRENT NEURAL NETWORK DURING THE PREDICTION STAGE

Module‘

Module ¢ Module

1 1<i<M M
External s(n'—1) s(n — 1) s(n — M)
inputs . .

s(n—p) s(n—(i+p—-1)) s(n—(M+p-1))

1 1 1
Feedback y2,1(n) Yit1,1(n) yma(n—1)
signals n2(n-1) yi2(n—1) yma(n—1)

yi,N(n—-1) yi,n(n—1) ym,n(n—1)

Outputs y1,1(n) yia(n) yr,1(n)

summary of the modules’ inputs and outputs involved in the
computation.

The actual output of the PRNN is the filtered version of
y1,1(n), which is denoted by ysi(n). This latter signal is
designed to extract the full information content of the original
signal $(t), up to and including time n; more will be said on
the computation of ya(n) in Section III-E.

C. Linear Subsection

The linear subsection of the neural network-based predictor
consists of a tapped-delay-line (TDL) filter, which is shown
in Fig. 5. The weight vector of this filter is denoted by

an

w = [wyo, w1, Wig—1]T

where ¢ is the total number of taps. The tap inputs of the linear
subsection consist of the present output ygi(n) computed by
the PRNN and g — 1 past values of it, as shown by

e (n) = [waw(n), ya(n — 1), -, ya(n — g + 1)]T (12)

where g1 (n) is the filtered version of y;.1(n). The output of
the linear filter is thus defined as the inner product

3(n+1) = wi yg(n). (13)
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The output 5(n+1) is a prediction of the actual sample s(n+1)
of the original signal s(t).

D. Cost Function
Each level of the PRNN computes an error signal defined by

ei(n) =s(n—i+1)—yia(n), i=12---,M (14

where the sample s(n — ¢ + 1) of the input signal s(t) is
the desired response of module 4. Note that the output y; ;(n)
of module 4 is limited in amplitude to the range (0, 1) by
virtue of the sigmoidal activation function described in (1).
The corresponding speech sample s(n — ¢ + 1) is adjusted to
occupy the same amplitude range prior to processing. Given
the error signal e;(n), the overall cost function for the PRNN
is thus defined by

M

E(n) =) X le}(n)

=1

15)

where ) is an exponential weighting factor that lies in the range
(0< X < 1). The term A*~! is, roughly speaking, a measure
of the memory of the individual modules in the PRNN. The
use of this exponential weighting function is motivated by
recursive lease-squares estimation [11].

E. Algorithmic Design of the Predictor

The cost function £(n) is minimized by using an approx-
imation to the method of steepest descent. Specifically, the
change AW applied to the synaptic weight matrix W of a
module is computed along the negative of the gradient of £(n)
with respect to W. Thus, the computations performed by the
PRNN at time n proceed in a self-organized manner in three
stages as follows:

1) Prediction. Given the input vectors s(n),
s2(n),---,sp(n) and the desired responses s(n),
s(n—1),---,8(n — M + 1), the individual modules of
the PRNN compute the one-step prediction errors e (n),
e2(n),- -+, ep(n) respectively, as described in (14); the
vector 8;(n) is defined in 4) fori =1, 2, ---, M.

2) Weight Updating. The prediction errors are used to
compute the matrix of local gradients 9&(n)/OW and,
therefore, the correction AW applied to the old weight
matrix W. Accordingly, the updated value of the synap-
tic weight matrix W, is computed.

3) Filtering. The updated weight matrix W, and the
updated p-by-1 input vectors with leading elements s(n)
s(n—1),---,8(n — M + 1) are used to compute the
filtered output ygic(n) as the output of the first (visible)
neuron in module 1 of the PRNN. This is done by
proceeding through the M modules one by one.

As mentioned previously, the filtered signal ygy,(n) consti-

tutes the final output of the PRNN at time n.

Turning next to the linear subsection, the output §(n + 1) of
the TDL filter, which is produced in response to the sequence
{ar(n), ya(n—1), - - -, yai(n— g+1)}. is compared against
the desired response s(n + 1). The well-known least-mean-
square (LMS) algorithm is used to adjust the tap weights of
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Fig. 6. Nonlinear prediction of a speech signal. Continuous curve: actual
speech signal. Dashed curve: nonlinear prediction (including tapped-delay-line
filtering).

the TDL filter. This is done in an attempt to minimize the error
signal (i.e., the difference between s(n + 1) and §(n + 1) in
a “mean-square sense”).

A summary of the complete learning algorithm used to
design the nonlinear adaptive predictor is presented in the
appendix at the end of the paper. The appendix also includes
a procedure for the initialization of the learning algorithm.

IV. EXPERIMENTAL RESULTS

A. Nonlinear Prediction of a Speech Signal

In this section, we illustrate the application of the nonlinear
adaptive prediction described herein to the important case
of speech signals. In particular, we present highlights of an
experimental study based on a male speech, i.e., when we
record audio data . ... The recorded time series corresponding
to this speech signal (sampled at 8 kHz) is made up of 10
000 points.

The predictor has the following parameters:

a) Nonlinear subsection:
Number of modules, M = 5.
Number of neurons per module, N = 2.
Nonlinear prediction order,p = 4.
Leaming rate, n = 0.0001
Forgetting factor, A = 0.9.

b) Linear subsection:
Length of tapped-delay-line filter, g = 12.
Learning rate, ¢ = 0.3.

Fig. 6 shows a plot of 800 samples of the speech signal
versus time. The continuous curve is the actual speech signal,
and the dashed curve is the one-step prediction performed by
the nonlinear adaptive predictor consisting of the PRNN and
TDL sections.




HAYKIN AND LI: NONLINEAR ADAPTIVE PREDICTION OF NONSTATIONARY SIGNALS 531

1000 1500

3500

.7 N
10 0 500

2000 2500 3000
Frequency, Hz

4000

Fig. 7. Power spectrum of the nonlinear prediction error. Continuous curve:
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Fig. 8. Histogram of the nonlinear prediction error.

Fig. 7 shows the power spectrum of the resulting prediction
error sequence. The power spectral density is fairly constant
across a band from 200-3200 Hz. The solid line presents the
average power spectrum at each frequency point, whereas the
two dashed lines correspond to the 95% confidence range. Fig.
8 shows the histogram of the prediction error, which is found to
have a 3 distribution. The conclusion to be drawn from these
two latter figures is that the nonlinear prediction error may
be closely modeled as a white and approximately Gaussian
process, indicating that it consists essentially of statistically
independent samples.

B. Performance Comparisons

Continuing with experimental results, Fig. 9 shows the
prediction performed by a linear (tapped-delay-line) predictor
with 12 taps, using the same speech signal as that used in Fig.
6. Comparing Figs. 6 and 9, we see that the prediction of a
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Fig. 9. Linear prediction of a speech signal. Continuous curve: actual speech
signal. Dashed curve: linear prediction.
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Fig. 10. Squared prediction error versus the number of speech samples.
Continuous curve: nonlinear predictions. Dashed curve: linear prediction.

speech signal using a nonlinear adaptive predictor provides a
much better approximation to the actual speech signal than the
linear predictor. The improved performance of the nonlinear
adaptive predictor compared with the linear adaptive predictor
is more vividly displayed in Fig. 10; the solid curve in this
figure corresponds to the squared nonlinear prediction error
versus the number of samples, whereas the dashed curve
corresponds to the case of linear prediction.

For a quantitative evaluation of prediction performance, we
may use the following error measure expressed in decibels:

R, = 10log,((82/67) (16)

where 62 is the mean-square value of the incoming speech
signal, and 612, is the corresponding value of the prediction
error at the predictor output. For 10 000 speech samples, 62 is
calculated to be about 0.3848. For the PRNN-based nonlinear
predictor 82 is about 1.18 x 1073, yielding R, = 25.14 dB.
On the other hand, for the linear adaptive predictor, 63 is about
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Fig. 11. Squared prediction error versus the number of speech samples. Solid
curve: the PRNN-based nonlinear adaptive predictor. Dashed curve: nonlinear
adaptive predictor ising a conventional recurrent neural network.

2.5 x 1073, yielding R, = 22.01 dB. These results indicate
a processing gain of 3.13 dB for the nonlinear predictor over
the linear one.

Finally, Fig. 11 compares the performance of the PRNN-
based nonlinear adaptive predictor with that of a corresponding
predictor using a conventional (i.e., a single, fully connected)
recurrent neural network trained with the RTRL algorithm.
Both networks employ the same total number of neurons (i.e.,
10) and the same tapped-delay line section (with 12 taps). The
solid curve pertains to the squared prediction error plotted
versus the number of speech samples for the PRNN case,
whereas the dashed curve pertains to the nonlinear adaptive
predictor using the conventional recurrent network. On the
whole, the two nonlinear adaptive predictors exhibit a similar
performance, although: the PRNN-based. structure appears to
have a slight advantage. The main point to note, however,
is that with five modules and two neurons per module, the
computational complexity of training the PRNN is on the
order of 5 x 2%, whereas the computational complexity of
training the conventional recurrent network is on the order of
104. For the application described here, the PRNN reduces
the computational complexity by more than two orders of
magnitude.

C. Choice of Design Parameters

The choice of values assigned to the number of modules
M, the number of neurons per module N, and the number of
taps ¢ in the nonlinear adaptive filtering system (whixh were
described in Figs. 3 and 4) were determined experimentally,
as described here:

* In principle, the more modules we use, the more accurate
is the “linearization” of the input space performed by the
PRNN. Fig. 12 shows the relation between the mean-
square prediction error of the speech signal and the
number of modules M, assuming that N = 2, p = 4, and
g = 12. From this figure, we see that for M larger than
6, the mean-square prediction error is almost constant.

-
(-]

-
o0

Mean-Square Prediction Error
FS

8 7 8 ] 10 1 12
Number of Modules

Fig. 12. Illustrating the relation between the mean-square prediction error
and the number of modules for the case of a speech signal.

* The linearization of the input space may also be improved
by increasing the number of neurons per module N. Fig.
13 illustrates the effect of varying N on the mean-square
prediction error, assuming that M = 5, p = 4, and q =
12. As expected, we see that increasing N has the effect
of reducing the mean-square prediction error, but this is
achieved in a very gradual manner. In any event, the use
of a large NV is not recommended since the computational
requirement increases sharply with N, hence, the choice
of N = 2 as the design value.

+ Intuitively, we expect the.accuracy of the one-step predic-
tion performed by the linear subsection to be enhanced
by increasing the number of taps g. This is borne out
by the results shown in'Fig. 14, where the mean-square
prediction error is plotiéd versus ¢ for M = 5, N = 2,
and p = 4. As ¢ increases from 2 to 12, the mean-square
prediction error decreases sharply, and once g exceeds 12,
the prediction error is reduced only by a small amount
on the average. This result is in keeping with the order
of about 12 for an autoregressive (AR) model of speech
reported in [13].

Finally, the choice of the nonlinear prediction order p = 4 for
the PRNN follows [14].

One other design parameter that needs to be specified is the
number of pretraining samples Np. In general, if Ny is too
small, the epochwise training method may not determine an
adequate initial weight matrix for the recurrent neural network.
An inadequate initial value for the weight matrix may cause the
PRNN to diverge. The main purpose of pretraining is merely to
determine an adequate set of initial weights. To economize on
pretraining time, the size of pretraining samples Ny is limited
to about one or two hundreds. This choice is also justified
experimentally as follows. Fig. 15 shows a plot of the mean-
square prediction error versus Ny. Here, we see that when
Np is less than 50, the mean-square prediction error rises
very sharply, indicating divergence of the adaptive prediction
process.. When Ny exceeds 50, the mean-square prediction
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Fig. 13. 1llustrating the relation between the mean-square prediction error
and the number of neurons in each module for the case of a speech signal.
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Fig. 14. Illustrating the relation between the mean-square prediction error
and the number of taps in the linear subsection for the case of a speech signal.

error decreases but at a very gradual rate. The choice of No =
200 is thus justified. ‘

V. CONCLUDING REMARKS

In this paper, we have described a novel pipelined re-
current neural network (PRNN) that, together with a linear
subsection in the form of a tapped-delay-line (TDL) filter,
provides a powerful device for the nonlinear adaptive filtering
of nonstationary time series. The adaptive signal processing
capability of this new network has been demonstrated by
studying the one-step prediction of speech signals. In addition
to this capability, the new network has the potential for solving
other difficult nonlinear adaptive signal processing tasks such

. as system identification, adaptive equalization, and adaptive
noise cancellation where nonlinearity and nonstationarity are
both important factors; the latter applications have yet to be
explored.

00 50 100 150 200 250 300

Pretraining Number of Samples, N,

Fig. 15. Plot of the mean-square prediction error versus the number of
pretraining samples.

An important attribute of the new neural network-based
adaptive predictor is its high computational efficiency. Specif-
ically, the total computational requirement of- processing a
single sample is O(MN* + 3(g + 1)) arithmetic operations,
where

M number of modules

N number of neurons per module in the PRNN

g number of taps in the TDL filter.

For a total number of M N neurons in the PRNN, this is
to be contrasted with the computational requitement of a
corresponding ‘structure involving the use of a conventional
recurrent neural network, which is O(M*N* + 3(q + 1))
arithmetic operations. Thus, the computational savings made
possible by the use of the PRNN can indeed be enormous for
large M.

The new nonlinear adaptive predictor has been successfully
applied to the adaptive differential pulse-code modulation
(ADPCM) of speech signals [15], [16]. Computer simulation
and listening tests on different speech signals show that
the nonlinear ADPCM so designed continues to perform
satisfactorily at bit rates as low as 16 kby/s.

APPENDIX
ALGORITHM FOR ON-LINE TRAINING
AND NONLINEAR ADAPTIVE PREDICTION

1. Nonlinear Subsection

* Prediction
At the nth time point, the
s1(n),-- -, 8m(n) are obtained, where

8;(n) = [s(n—i),s(n—i—l),-o-,s(n—(z’+p—1))]T a7n

input  vectors

The output signal of module ¢ and the error signal of
level ¢ are defined by, respectively

yi,1(n) = (W, s:(n),ri(n)) (18)
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ei(n)=s(n—i+1)—y;1(n) 19)

where ¢ = 1,2,---,M, and y;1(n) denotes the one-
step prediction computed by the ith module, and e;(n)
is the corresponding error signal; W is the synaptic
weight matrix of module ¢, and r;(n) is its feedback
signal vector. After every module of PRNN finishes its
calculations, a series of error signals are obtained, namely,
e1(n), e2(n),-- -, ep(n).
» Updating of the weight matrix W

The overall cost function for the pipelined recurrent

neural network (PRNN) is defined by

M
E(n) = Xte}(n) 0)
i=1 .

where A is an exponential forgetting factor that lies in
the range (0 <A < 1). The change applied to the klth
element of the weight matrix W is

9E(n)
n Bwk,l

Awk,l = (21)
where 7 is a fixed learning-rate parameter 1 < k < N
and 1 <! < (p+ N +1). Hence, using a modification of
the RTRL algorithm [6], the change AW applied to the
weight matrix W using (21) is calculated, and the weight
matrix is updated as

Woew = (W + AW) (22)

« Filtering
Using the updated weight matrix W ey, and the up-
dated p-by —1 input vectors with leading elements s(n),
s(n—1),---,8(n— M), the filtered signal ygi;(n) at the
output of the first visible neuron of module 1 in the PRNN
is computed.

2. Linear Subsection
The one-step prediction computed by the TDL filter is
5(n+1) = wlya(n) 23)
where yg(n) is derived from the PRNN:
Yaie(n) = [ae(n), ya(n — 1), yan(n — ¢ + 1)]7 (24)

The sample s(n + 1) of the original signal represents the

desired response; hence, the error signal is defined by
e(n+1) = s(n+ 1) — w] yg,(n) (25)

The weight vector of the TDL filter is updated in accordance
with the LMS algorithm:
w; — wy + pyg(n)e(n + 1) (26)

where p is the step-size parameter.

3. Recursive Calculation

Let n = n+ 1 and return to step 1. Repeat the nonlinear
adaptive prediction until the input signal is terminated.

Initialization of the Algorithm: To proceed with the com-
putation, we need to initialize the tap-weight vector w; of the
TDL filter and synaptic weight matrix W of every module in
the PRNN. We also need to specify the initial feedback signal
vector r of very module.

Initialization of the tap-weight vector w; follows the cus-
tomary practice of setting it equal to the null vector or a
randomly distributed set of small values. However, initial-
ization of the synaptic weight matrix W and the feedback
signal vector r require special attention. For this initialization,
we may use the traditional epochwise training method of
recurrent neural networks, which is applied simply to one
module operating with Ny samples of the input signal.

The training procedure is summarized as follows:

1) Input Ny samples of the signal s(t), and obtain a p-by
—1 input vector s(i) and a desired signal d(i), when
1<i<n andn = Ng—-p:

a(i) = [s(i + (p = 1)), -+, 8(D)]" @7

d(z) = s(i +p) (28)

2) The pretraining procedure beings with ¢ = 1. Choose a
random set of small values for the (p + N +1)-by —N
weight matrix W and the N-by —1 feedback vector r
(1).

3) Input the s(i),r(z), and d(i) to a module, and perform
the following calculations:

yx(2) = ¢(vi(d)) 29
P
ve(i) = Y wias(i + (p— 1) + Wep41

=1
pHN+1

+ Y werispon(d) (30)
I=p+2

e(i) = s(i+p) — y1(4) (31

where the weight wy, p41 represents the adjustable bias.
4) Let i = ¢+ 1, and set

(@) =y(i-1)

and return to step 3. :

5) Repeat the calculation of steps 3 and 4 until i = n’. If
the cost function E(n’) is less than a permitted value
£, the pretraining procedure is stopped; otherwise, go to
step 6. The cost function E(n') is defined by

(32)

E(n) = %Z ¢(i) (33)
=1

6) Compute the change AW by using the gradient esti-
mation algorithm along the negative of the gradient of
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E(n') with respect to W, and update the weight matrix:

W — W+ AW (34)

7) Seti =1, and r(1) = y(n’) and return to step 3.

To economize on pretraining time, the number of pretraining
samples Ny is limited to about 100-200 samples. Roughly
speaking, the permitted error e is about 1% of the mean-square
value of the input signal s(t).
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