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Improved Bayesian MIMO Channel Tracking for
Wireless Communications:

Incorporating a Dynamical Model
Kris Huber and Simon Haykin, Fellow, IEEE

Abstract— This paper investigates the improved decoder per-
formance offered by incorporating dynamic linear modelling
techniques when applied to particle filters for use in tracking the
MIMO wireless channel. Conventional Bayesian-based receivers
that perform channel tracking necessarily require a wireless
channel model, typified by the use of a low order auto-regressive
(AR) model. Normally, the model parameters are static in nature
and are estimated a priori of any transmission; thus if the
channel conditions change, a model mismatch occurs and system
performance is degraded. Our method allows for time-varying
channel statistics by modelling the channel fading rate as a
Markov random walk. This new procedure allows the channel
model to assume a time-varying behavior. As will be shown
through simulations, the incorporation of dynamic modelling of
time-dispersive channels not only offers superior performance,
but at high SNR eliminates the error-rate floor commonly seen
in systems using the static AR models.

Index Terms— MIMO, wireless channel tracking, dynamic
linear modelling, particle filtering.

I. INTRODUCTION

IN this paper, we consider the problem of providing re-
liable channel estimates to coherent decoders for use in

next-generation wireless networks. Enticed by the promise
of increased spectral efficiency and higher data rates, next-
generation wireless systems will necessarily operate under
a multiple-input, multiple-output (MIMO) antenna network
{Nt, Nr}, where Nt and Nr denote the number of transmit
and receive antenna elements, respectively. Central to the
ability of obtaining these high data rates is the type of space-
time code (STC) being used [1]. Coherent space-time decoders
require not only the received signal to perform demodulation,
but also a reliable estimate of the channel-state information
(CSI). Should the estimation mechanism fail to yield accurate
estimates of the fading process, the channel decoder will
necessarily also perform poorly. Current wireless systems
obtain the CSI through a process known as Pilot-Assisted
Transmission (PAT) [2], [3]. PAT multiplexes a periodic known
sequence of symbols with the information-bearing symbols
in each frame of transmitted data. Using the training data,
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the receiver is then enabled to obtain an estimate of the
CSI. However, this estimate remains static between successive
training sequences, during which time the channel itself will
be continually changing. Additionally, due to channel noise
and the time-varying nature of the wireless channel, the CSI
estimate itself may not be accurate [4], [5].

Initial work for improving the channel estimate by applying
tracking techniques were performed using Kalman filtering
[6] and Mixture-Kalman filtering [7]. Kalman-based systems
necessarily require a state model of the system of interest, in
this case the wireless channel. These systems modelled the
channel with a static AR process, and the additive channel
noise with a Gaussian distribution. Recent work by Komn-
inakis [8] has shown that using low-order AR models to
represent the channel produces an error-floor in performance
at high signal-to-noise ratios. The error-floor arises from
the fact that low-order AR processes cannot truly model
the autocorrelation sequence of the wireless channel [9]. In
effect a model mismatch between the AR model and the
channel itself occurs. In order to overcome this deficiency, it
becomes necessary to increase the order (and necessarily the
overall complexity) of the state equation. Work by Blackard,
Rappaport and Bostian [10] focused on the more realistic
modelling of the channel noise as non-Gaussian. This was
evinced by channel sounding measurements of typical wireless
environments. Under these assumptions, it became pertinent
to replace the Kalman filter with a particle filter [11]. MIMO
channel trackers implemented by Haykin, Huber and Chen
[12] and Chin, Ward, and Constantinides [13] revealed the
receiver-performance improvements of particle based systems
over their Kalman counterparts. It should be noted that in
the above mentioned work, all of which incorporate the static
AR model, the error-floor phenomenon is present (the degree
of which is dependent upon the details of each experimental
setup) and is thus a systematic error which needs to be
addressed.

In order to develop a dynamic state model for the time-
varying wireless channel, concepts from the field of Bayesian
forecasting are used. Bayesian forecasting is concerned with
the optimal learning and prediction of different classes of
dynamic models [14]; in this paper, we are concerned with
the extension of the static AR model of order one to its
time-varying counterpart. Work by Djurić and Kotecha [15]
has shown how a particle filter might be implemented to
adapt to unknown static or piecewise changing AR parame-
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Fig. 1. Block receiver design structure incorporating the channel tracking
modules.

ters; however, the emphasis in [15] is on adaptation to the
unknown parameters and not on the use of these parameters
for prediction, which is a necessary requirement in the MIMO
receiver case. The rest of this paper is organized as follows.
Section II presents the physical system setup. Section III re-
views particle filtering, and details the state and measurement
equations needed for particle filtering. The static state model
is then improved upon by the incorporation of a dynamical
channel model. Section IV presents experimental evaluations
of the proposed channel tracking algorithm. Finally, section V
concludes the paper.

II. PROBLEM FORMULATION

Consider a wireless transceiver operating in a frequency
flat, time-selective fading channel with Nt transmit and Nr

receive antennas as shown in Fig. 1. The incoming data stream
is encoded, multiplexed and transmitted across the wireless
channel. The received signal is then iteratively processed by
the channel decoder and the prediction and filter modules
that collectively form the channel-tracking algorithm using
simulations. The goal of the receiver is to produce an estimate
of the transmitted symbols s(k).

We model the input-output relationships as [16]:

rk = Hksk + nk (1)

where rk ∈ CNr is the complex baseband received signal
at transmit time k, Hk ∈ CNr,Nt is the complex channel
matrix at time k, and sk ∈ CNt is the transmitted symbol
vector at time k. The additive measurement noise nk ∈ CNr

can be modelled as either a complex-Gaussian distribution
pn(z) = NC(z; 0, σ2) with argument z, mean zero, and
variance σ2, or as the Middleton Class-A noise model. This
latter model has been used to model the impulsive noise
commonly generated in an indoor/urban wireless environment
[10], [17]. The probability density function of the noise model
is given by

p(z) = (1− ε)NC(z; 0, ς2) + εNC(z; 0, κς2), (2)

where 0 ≤ ε ≤ 1 and κ >> 1. The first component (1 −
ε)NC(z; 0, ς2) represents the ambient background noise with
probability 1 − ε, while εNC(z; 0, κς2) denotes the presence
of an impulsive component occurring with probability ε. In
order to maintain a constant noise variance σ2 for a particular
SNR, we may vary the parameters ε and κ such that

σ2 = (1− ε)ς2 + εκς2. (3)

Finally it should be noted that by setting ε = 0, the mixture
model reverts to the Gaussian distribution.

III. RECEIVER STRUCTURE

A. Particle Filter
In using particle filters for the tracking mechanism, the goal

is to estimate the posterior distribution of the state, given all
the available information. In the context of tracking, where
at each observation new information becomes available, we
would naturally wish to update our estimate of the state. Thus
it is desirable to obtain a recursive form for the solution. The
Bayesian solution is implemented in a closed-loop recursive
process involving two steps: prediction, and updating. To
proceed, define the state vector of dimension {Nt × Nr, 1}
given by hk = Vec(Hk). Then, if we assume that an initial
estimate of the posterior density p(hk−1|rk−1) at time k − 1
is available, where hk is the state variable and rk is the
observation, we can predict how the state will evolve over
time k via the Chapman-Kolmogorov equation:

p(hk|rk−1) =
∫

p(hk|hk−1)p(hk−1|rk−1)dhk−1 (4)

where p(hk|hk−1) describes how the state density evolves
with time k, and is defined by the state equation. When the
current observation rk becomes available, we may update the
prior (4) via Bayes’ rule, obtaining

p(hk|rk) =
p(rk|hk)p(hk|rk−1)∫

p(rk|hk)p(hk|rk−1)dhk
(5)

where p(rk|hk) is the likelihood of receiving the observation
rk, given the state hk. In the wireless MIMO case, the
likelihood is determined by the observation equation (1). The
denominator term in (5) is necessary in order to keep the
new estimate of the posterior properly normalized such that∫

p(hk|rk)dhk = 1 for all k. From the distribution p(hk|rk)
we may obtain our channel estimate ĥk. This value is needed
by the channel decoder to compute an estimate ŝk of the
transmitted data symbols. In this work we define ĥk as the
expectation over p(hk|rk), i.e., ĥk = E[p(hk|rk)], where E
is the expectation operator.

While the above equations outline the tracking procedure
in principle, in reality obtaining analytical solutions can be
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difficult if not impossible. In order to recursively evaluate (4)
and (5), we utilize the method of Importance Sampling1, which
is a common Monte Carlo (MC) method for sequential MC
filters [18], [19]. The idea is to represent the required posterior
density by a set of weighted particles:

p(hk|rk) '
L∑

`=1

w`
kδ(hk − h`

k) (6)

where L is the number of particles, δ(·) is the Dirac delta
function, and h`

k is the state of particle ` = 1, ..., L at time k.
The weights themselves are normalized such that at each time
k,

∑L
`=1 w`

k = 1. As the number of particles becomes large,
the approximation in (6) converges to the true posterior pdf.

New particles are drawn from a known distribution referred
to as the proposal distribution2

hk ∼ q(hk|h`
k−1, rk). (7)

The proposal distribution contains all the a priori knowl-
edge one has about the nature of system under study. In gen-
eral, choice of the proposal distribution is problem-dependent.
While, in principle, the optimal importance distribution de-
fined as the density which minimizes the variance of the
weights (w`

k) conditioned on (h`
k−1) and (rk) does exist, it is

generally difficult to define for the problem at hand; moreover,
determination of the optimal distribution is computationally
intensive. Consequently, much work has gone into finding sub-
optimal proposal distributions [12], [20].

For the work reported in this paper, in order to increase the
sampling efficiency of the proposal distribution, we adapt the
gradient particle filter (GPF) discussed in [12]. Implementa-
tion of the standard particle filter generally sets the proposal
distribution equal to the state evolution density (commonly
referred to as the bootstrap filter). However, this form of
implementation can be inefficient for sampling. For example,
states occurring in the tails of the distribution will require
many particles because of each particles’ low probability of
being sampled in that region. By contrast, the GPF incor-
porates the current observation rk in its predictive estimate.
The GPF operates by applying a correction factor based on
the gradient of the likelihood for each resampled particle.
This correction tends to guide the particles towards the high
probability regions of the density. Using the GPF serves a dual
purpose: Allowing the filter to operate with a reduced number
of particles, and providing a more reliable predictive density
needed for the next time step.

Following the selection of the particles from (7), the weights
for ` = 1, ..., L at time ‘k’ are sequentially updated as follows
[11]:

w`
k = w`

k−1

p(rk|h`
k)p(h`

k|h`
k−1)

q(h`
k|h`

k−1, rk)
. (8)

Note that the likelihood function p(rk|h`
k) implicitly assumes

that the estimates of the transmitted symbols (sk) obtained
by the receiver are available. The key point to realize is that

1For a complete description of Importance Sampling including the pseudo-
code, we refer the reader to [18].

2It is important that we can both draw from this distribution and evaluate
the likelihood of those particles using this distribution.

we have used a weighted set of particles drawn from a known
importance density in order to approximate an unknown target
distribution of interest. In practice, however, it has been shown
[21] that the distribution of the importance weights becomes
more and more skewed as time increases. This phenomenon is
called weight degeneracy or sample impoverishment. To mon-
itor the degeneracy, a suggested measure called the effective
sample size,

N̂eff =
1∑L

`=1(w
`
k)2

, (9)

is usually introduced [18]. Whenever N̂eff is below a prede-
fined threshold NT (typically NT = 2

3L), a resampling proce-
dure is performed. Specifically, particles with low weights are
discarded, forming a subset of particles {hp

k}. New particles
h`

k are generated by respampling with replacement (to keep
L constant) particles from the subset {hp

k} with probability
Pr(h`

k = hp
k) = wp

k. The weights must now be normalized by
resetting them to w`

k = 1/L. In a sequential filtering frame-
work, the resampling step is almost inevitable; however, it
also introduces increased random variation into the estimation
procedure.

B. Modelling the Wireless Channel

In formulating a channel model suitable for use in the
channel tracker, the goal is to accurately capture the dynamics
of the wireless channel yet remaining mathematically tractable
for implementation in a discrete-time state-space context.
We first note that according to the Bello model [22], the
fading process from transmit antenna i to receive antenna
j is modelled as a complex Gaussian process. A suitable
model is thus an auto-regressive (AR) model. Information-
theoretic results have shown that a first-order AR model is
sufficient to accurately represent the local behavior of the
time-varying wireless channel [23]. A higher order model
while providing more accurate long-term channel estimates,
necessarily requires an AR order of 100 - 200 coefficients [9]
and is thus highly intractable for the state model. Using the
first-order assumption, we finally realize the state evolution at
time k by using a first-order autoregressive model of the form

hk = βhk−1 + vk (10)

where β is the static AR coefficient, hk is a vector of length
NtNr where each element is the channel gain at time k for
path from the ith transmit antenna to the jth receive antenna,
and vk ∼ NC(0, σ2

vI) is the complex driving noise of the
model. No statistical dependence is assumed between the noise
terms across the indices i and j for all k.

Additional advantages of using the AR model for describing
the evolution of the channel state include:

1) The model is simple and mathematically tractable.
2) The true channel impulse response tends to revert to

zero; the behavior of (10) also tends to revert to zero.
3) Like the wireless channel, the AR model is a Markov

process. This implies that the pdf for the current esti-
mate, denoted by p(hk|h1:k−1) is not dependent upon
all previous estimates but only on the most recent
estimate p(hk|hk−1). Owing to the Markovian property,
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the AR model greatly simplifies the complexity of the
recurrence relations used in the particle filter.

In order to parameterize (10), we note from [22] that for a
time lag (τ ) the autocorrelation of the channel fading process
is:

E[hkh
†
(k−τ)] = J0(2πfDτ)I, (11)

where I is the identity matrix, J0(·) is the zeroth-order Bessel
function, τ is the time lag, and fD denotes the Doppler fre-
quency resulting from relative motion between the transmitter
and receiver. The Doppler shift itself is given by

fD =
v

c
fc (12)

where v is the mobile speed, c is the speed of light, and fc is
the carrier frequency. Equating (10) to the autocorrelation of
(11) for time lag τ = {0, Ts}, we respectively have

β2 + σ2
v = 1, τ = 0 (13a)
β = J0(2πfdTs), τ = Ts (13b)

where, in the second equation, 1/Ts is the sampling rate. For
example, if the normalized desired fading rate is fDTs = 0.01
(a typical fast fading rate), then β = 0.999, and σ2

v = 1.972×
10−3.

A final comment that illustrates the suitability of the model
is in order. By projecting (10) τ time steps into the future, the
expected value of a future channel state conditioned on the
current value is given by

E[h(k+τ)|hk] = βτhk. (14)

For a β value near one, then h(k+τ) ≈ hk, i.e., the best guess
about a future estimate is the current estimate. Note that this is
precisely what is assumed by sending periodic training codes
for the wireless channel; once the channel has been estimated,
it is assumed to remain approximately constant until the next
set of training data is sent. Significant changes over longer
periods of time are expected but since the emphasis is on
short-term prediction, we are not interested in the longer-term
variation.

C. Incorporation of Dynamic Modelling in Particle Filtering

Examination of the state equation (10) assumes that the
autoregressive coefficient β and the driving noise variance σ2

ν

are static for all time tk. This implies that the model is only
accurate so long as the long-term statistics of the channel
(for example, the fading rate) remain constant for all time.
However, the short-term statistics of the channel may vary
dramatically. To account for these short-term statistics we
allow the parameters of the state equation itself to become
time-varying. To justify this modification, consider Fig. 2,
which shows the short-time evolution of a typical fast-fading
wireless channel. This figure includes two deep fades which
occurred at 0.14s and 0.6s respectively. Now, if we were
to use the first-order AR model of (10) to account for the
short-term evolution depicted in Fig. 2, then by virtue of the
zero-mean assumption implicit in (10) we would find that the
effect of the fading phenomena is practically ignored, i.e., the
state equation’s predictive capability is ill-suited to the channel
during deep fades. Such an end result is clearly unacceptable,
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Fig. 2. A typical Doppler faded channel realization. For this fading rate
(fDTs = 0.01) there are two deep fades at times 0.14s and 0.6s respectively.
During these instances the static AR model of (10) is ill-suited for providing
predictive channel estimates.

given the requirement to track the channel state as accurately
as possible, which is an essential ingredient in the semi-blind
strategy used for channel-state estimation.

To incorporate a dynamic channel model in the channel-
tracking strategy, we first rewrite the state-equation (10) as

hk = hk−1 + (β − 1)hk−1 + vk (15)

and now define the new term

µk = (β − 1)hk−1 (16)

Accordingly we may account for the time-varying character-
ization of the AR coefficient β and noise variance σ2

v by
introducing a primitive equation, which is modeled as the first-
order Markov process

µk = µk−1 + wk (17)

where the new noise term wk ∼ NC(0, σ2
wI).

Our goal is now to track the primitive density function
p(µk). Given that both the state equation (15) and primitive
equation (17) are linear and Gaussian, we can model the distri-
bution of p(µk), as a Gaussian distribution NC(mk,Pk), and
thus utilize a Kalman filter formulation to perform the tracking
recursions (see Table I). Using this primitive density, we can
now draw our estimate µk ∼ NC(mk,Pk) corresponding to
the change in the wireless channel estimate. In effect, we have
taken the static state parameters in equation (10) and shown
how they may be reformulated as dynamic parameters (15)
which are distributed as complex-Gaussian distribution.

A state-flow interpretation of the iterative estimation process
is shown in Fig. 3. At time k, the primitive distribution
NC(mk−1,Pk−1) is first propagated forward from time k−1
to k (step 1). In step 2, the predicted primitive distribution
NC(m̄k,Qk) is then used by the channel state prediction
module to get the predictive samples hk|k−1 (these samples
are used by the channel decoder to get ŝk). Referring to
Table I, using the estimated symbols obtained by the decoder
(step 3) and the predicted samples obtained in step 2, the
posterior distribution is now estimated via (6) and (8). Finally,
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TABLE I
PROCEDURE FOR DYNAMIC STATE EQUATION UPDATES.

For time steps k, k + 1, k + 2, · · ·
1: Starting from posterior estimate for time k − 1:

NC(mk−1,Pk−1)

For some mean mk−1 and variance Pk−1.
2: Update the prior distribution and perform prediction.

NC(mk−1,Pk−1) → NC(m̄k,Qk)

where,
m̄k = mk−1 (18)

Rk = Pk−1 + σ2
wI (19)

Qk = Rk + σ2
vI (20)

3: Posterior estimate for time k:
NC(m̄k,Qk) → NC(mk,Pk)

where,
mk = m̄k + RkQ

−1
k

h
ĥk − (ĥk−1 + m̄k)

i
(21)

Pk = RkQ
−1
k σ2

v (22)

Flow Model of Receiver
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Primitive Density
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2. Predict State
Density

3. Decode Received
Signal rk

4. Update State
Density5. Update Primitive

Density
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(21)-(22)

(15)
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k → k + 1

^

Fig. 3. Flow-graph illustrating how to incorporate a dynamical AR module.
The goal is to model the changes in the channel as a Gaussian distribution
whose mean and variance correspond to the parameters of the parametric
AR(1) model given by (21) and (22).

the primitive density is updated according to (21, 22) in
Table I, to reflect the new channel estimate. Since the primitive
distribution is continually being updated according to the
current channel estimates, it is ‘aware’ of changes in the
underlying dynamics of the channel (i.e., it takes into account
recency). It is this adaptation that allows the state prediction
module (step 2) to produce a more accurate predictive channel
estimate at time k + 1 (For one iteration of the complete
tracking algorithm, see Appendix I at the end of the paper).

Using convergence results arising from the limiting behavior
of the recurrence relations (i.e., 18 through 22 in Table I), it
can be shown that:

As k →∞,

{
Kk , RkQ−1

k → K,
Pk → P = Kσ2

v

(23)

where,

K =
%(

√
1 + 4/%− 1)

2
I = ξI. (24)

Here % is the ratio σ2
w

σ2
v

, which plays a role similar to the
traditional signal-to-noise ratio of the transmitted signal to the
channel noise. The value ξ in (24) is bounded by 0 ≤ ξ ≤ 1

and is referred to as the rate of adaption. In the closed
model given in (17) (closed in the sense that no additional
information is obtained outside of the primitive equation),
the adaption coefficient rapidly converges to a constant value.
Using this convergence result provides insight into the nature
of the adaptive gain. Using (18) and the first line of (23), we
can rewrite (21) as

mk ≈ K(ĥk − ĥk−1) + (I−K)mk−1, (25)

where the approximation is good for large k. If ξ is close to
unity ≈ 1, then only the current observation influences the
model. Conversely, if ξ ≈ 0, then current observations are
almost completely rejected and the model degenerates into
a pure random walk model. Therefore, there is a trade-off
between the sensitivity of the predictor (ξ ≈ 1) and robustness
of the model (ξ ≈ 0).

D. Determining σ2
w via discount factors

Clearly, it is important for the adaptive gain to converge to
a ‘suitable’ value for the problem at hand. From (24), it is
seen that the value of ξ reflects the relative variation between
σ2

w and σ2
v through the parameter %. The question is how to

choose the proper %, or more aptly, how to choose σ2
w?

Using the convergence results just presented, (19) becomes
R = P + σ2

wI = P(I−K)−1. Combining (19) and (22), the
limiting behavior of the primitive variance is thus given by

σ2
wI = KP(I−K)−1. (26)

Thus between observations, the addition of the error wk leads
to an increase of K(I−K)−1 of the initial variance P; recall
that the role of the system variance is to provide a diffusive
effect. By defining the discount factor δ = 1 − ξ, the choice
of δ directly affects the adaption rate. For example, setting
δ = 0.9 and ξ = 0.1, we find that σ2

wI becomes roughly
11% of P, that is, we are putting more weight on our model
than on the observations. Since the limiting behavior is rapidly
achieved, the discount factor essentially implies a constant rate
of increase in uncertainty, for all k, not just in the limit. Thus
for a given discount factor we can define the time-dependent
primitive variance as

σ2
w,kI =

(1− δ)
δ

Pk−1. (27)

Using this method allows the model to adopt a time-varying
structure. Specifically, if the dynamics of the wireless channel
were to change, for example the Doppler fading rate were to
change, the dynamic AR model is more able to cope with such
a change than a static AR model. As mentioned previously,
the procedure for a complete iteration of the tracking filter
algorithm is shown in Appendix I.

IV. SIMULATIONS

We now present simulation experiments incorporating the
dynamic linear modelling for wireless channel tracking. The
simulations are carried out on a Nt = 2, Nr = 3 receiver
system using a 4-PSK symbol set. The number of particles to
use is a balance between choosing enough particles to reliably
sample the state-space, and using too many which will not
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Fig. 4. Symbol error rate vs. SNR for the different receiver types for both
Gaussian (a), and non-Gaussian noise. In the highly dispersive channel the
particle filter using the dynamic AR model provides the best results.

increase performance but increase complexity. In this work,
the particle filter uses 200 particles. A zero-forcing space-
time decoder is used for symbol estimation. The receiver uses
a PAT training scheme where one training symbol is inserted
for every 10 transmitted symbols. During a training sequence,
the minimum-mean squared estimate (MMSE) of the channel
is calculated from the training symbols. The MMSE estimate
is then used to guide the particles by averaging the MMSE
estimate with each particles’ estimate of the channel. During
a non-training interval, the particle filter will use the symbol
estimate from the channel decoder in order to produce a
corresponding channel estimate. Since the tracking algorithm
is expected to accurately estimate the channel even when no
training data are present, the receiver operates in a semi-blind
mode. For this work, the channel transfer function is modelled
as a frequency flat time-correlated function, and it is simulated
using an improved version of Jakes fading model [24]. The
particles were initially set equal to the first PAT estimate, and
then resampled according to (10). The initial distribution for
the primitive equation was set to m0 = 0 and P0 = 10−4I.

In an attempt to model the noise statistics of the urban
wireless channel, two different distributions of receiver noise
are used. The first is the widely accepted Gaussian distribution,
and the second is distributed according to the previously
discussed Middleton class-A model (2), with parameters ε =
0.1 and κ = 100.

Figures 4(a) and 4(b) show the symbol error rate under
a normalized Doppler rate (product of Doppler rate and
sampling period) of fDts = 0.009, in both Gaussian and
non-Gaussian noise, respectively. This represents a highly
time-dispersive channel. Immediately apparent is the failure
of the decoder using the PAT method, i.e. static channel
estimates, especially at high SNR where the performance
rapidly reaches a lower bound. This is true for both the
Gaussian and non-Gaussian distributions. The primary reason
for the poor performance is simply that the channel is changing
too rapidly. The only solution is to increase the number
of training symbols; however, this is undesirable since it is
wasteful of radio spectrum.

The bootstrap particle filter also performs poorly, rapidly
achieving an asymptotic error floor. Here the primary cause of
poor performance is that the simple static AR model of order
one is insufficient to capture the dynamics of the rapidly fading
channel. Since the bootstrap filter updates the weights based
solely on the likelihood function in (8), the poorly resampled
particles provide little support for obtaining a good posterior
estimate.

Looking at the gradient particle filter (GPF) [12], utilizing
the static AR model, while the symbol error rate is much
improved over the PAT method and bootstrap filter, perfor-
mance (relative to the perfect known channel case) does tend
to worsen as SNR increases. The improved performance of
the GPF over the bootstrap filter is due to the incorporation
of the gradient method which resamples the particles with
higher accuracy. However, even with the improved sampling,
owing to the static state model, we find that the performance
does approach an error floor at high SNR.

In contrast, the particle filter incorporating the dynamic
AR model is seen not only to outperform the static GPF
receiver, but it also tracks the performance of the receiver
using perfectly known channel estimates. There is no apparent
divergence at high SNR as in the previous two methods (note:
at very high SNR > 30dB for the non-Gaussian case a small
divergence is observed; however, 30dB is very high for mobile
wireless communications and the receiver is unlikely to ever
see such a strong signal). Thus, the dynamic AR receiver has
overcome much of the modelling limitations of the static AR
model.

In Figs. 5(a) and 5(b), the normalized Doppler rate has
been reduced to fDts = 0.001. If we assume our cellular
system is using a carrier of 2.1GHz and transmitting under
a GSM/EDGE symbol rate [25], then this rate of fading
would be expected for vehicular users operating on a freeway.
Relative to the performance of the optimal known channel
receiver, overall performance of all methods is close to the
optimal performance. The channel has become less dispersive,
and thus it presents an easier tracking task. The static method
as well as the bootstrap PF, previously shown to be unsuited to
track a highly dispersive channel, now perform well. However,
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Fig. 5. Symbol error rate vs. SNR for the different receiver types for
both Gaussian (a), and non-Gaussian noise. In the slowly fading channel,
all receivers perform much better. Note however, the particle filter using the
dynamic AR model still provides the best results.

even at this slower fading rate the bootstrap PF in Gaussian
noise is starting to show signs of approaching an error floor.
Despite the improved performance of all receiver methods, the
dynamic AR model still offers a performance increase relative
to the static AR model.

Returning now to the simulations, in Fig. 6, we show the
tracking performance of the different receiver types as the
dispersive nature of the channel increases. The signal-to-noise
ratio of the channel was set at 20 dB and the noise distribution
was Gaussian. Initially, when the normalized Doppler rate
is small (< 0.001), the channel remains approximately con-
stant between successive training symbols. Little adaptation
is necessary, and consequently all receiver tracking schemes
perform satisfactorily. However, as the Doppler rate increases,
the channel becomes more dispersive and tracking the channel
becomes increasingly difficult. Eventually, at very high fading
rates (> 0.02), even the dynamic AR model will begin to show
poor performance. However, for current cellular systems, the
upper Doppler limit we might expect to encounter would be
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Fig. 6. Mean squared error tracking performance (averaged over all channels)
vs. normalized Doppler rate.

0.01. Accordingly, we are justified by saying that the dynamic
AR model is robust for realistic wireless situations, which, in
the final analysis, is what matters in practice.

A. Comments on algorithmic performance

1) A proper choice of δ: Recall that the role of the discount
factor δ introduced in (27), is to provide a measure of the rate
of increase of uncertainty (or loss of information). Picking
the ‘optimal’ δ is problem-specific and it generally requires
an experimental approach. However, when the goal is short-
term prediction, the discount factor is typically in the range
(0.8 ≤ δ ≤ 1), where the main benefit is derived from data
smoothing. Returning to the wireless case, at low SNR where,
because of the high noise variance, we have little belief in
each channel estimate, we adopt δ ∼ 1 corresponding to a
small rate of loss of information. Equivalently, in a high-
noise condition, we choose to do more smoothing and put less
weight on each filtered estimate. Similarly, in high SNR, we
decrease δ; thus we are allowing the model to readily adapt to
each new channel estimate, and put less emphasis on ‘older’
measurements. In all the experiments performed in this paper,
at a SNR of 5 dB, the discount factor δ was set to 0.999. Then
as the SNR increases, δ is steadily decreased to 0.89 at 25dB.
Experimentally, the discount factor in this range was found
to produce the best performance results. These observations
suggest the need for devising a practical scheme that selects
δ on-the-fly in response to changes in signal-to-noise ratio.

2) Quality of the channel estimate: Information-theoretic
work by Lapidoth and Shami [26] examined how the effect of
estimation errors in the side information, or the fading process,
might affect the robustness of a communication scheme. The
authors conclude that in order to avoid performance degra-
dation, the second moment of the estimation error should be
small compared to the reciprocal of the SNR of the channel.
Specifically, they show the generalized mutual information
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IGMI for any single channel hij is given by

IGMI = E


log


1 +

Es|ĥij |2
σ2 + EsE

[
|hij − ĥij |2

]




 (28)

where Es is the symbol energy, σ2 is the noise power, h̄ij

is the true value of the channel from transmit antenna i to
receive antenna j, and ĥij is the corresponding estimate. Of
interest is the term e = E

[
|hij − ĥij |2

]
in the denominator

of (28), which denotes the error in the estimate. If we now
assume that the channel tracker is providing perfect estimates,
then e → 0 and (28) simplifies to the well known capacity
result where the receiver has perfect knowledge of the fading
information [26]. In our paper we experimentally confirm this
intuitively-satisfying theoretical result. If we assume that ‘a
small difference’ between the channel estimate and the inverse
of the SNR is given by at least an order of magnitude, that
is, e

SNR−1 ≤ 0.1, then from Fig. 6 we would expect that
at 20dB, the particle filter incorporating the dynamic model
performs almost at the known channel bound for fading rates
of 0.005 or less. Noticeable degradations will occur for fading
rates above this value. Returning now to Figs. 4 and 5, we
see that the performance is nearly equivalent to the known
channel performance for a fading rate of 0.001, while for the
fast fading rate of 0.009 a noticeable deviation is perceived.

Note that (28) also serves to help explain the error floor
phenomena for static models. As the SNR becomes large, the
value of σ2 in the denominator of (28) becomes negligible,
leaving only the error in the channel estimate e. Since, by
definition, a static model will not change, the diffusive effect
caused by the driving noise in the predictive equation (10)
will eventually come to be the dominant source of error (the
modelling error). Thus even if the SNR tends to infinity, the
estimation error will remain fixed, in which case the achievable
rates will be bounded in power and will therefore not grow to
infinity. By contrast, the dynamic method allows the driving
noise variance of the predictor model to vary as channel
conditions require; thus it is able to decrease the driving noise
variance (and thereby provide better performance) as the SNR
becomes large.

V. CONCLUSION

This paper provides convincing evidence for the benefit of
incorporating dynamic linear modelling techniques for use in
tracking a rapidly changing MIMO wireless channel. The AR
model of the channel, conventionally assumed to be static, is
now recast to allow for a time-varying behavior. The time-
varying parameter is modelled by a new equation, referred to
as the primitive equation, which assumes a Markovian nature.
The unknown dynamic noise variance in the primitive equation
is obtained using the method of discount factoring, which is
well-known in the Bayesian forecasting literature. Modelling
the wireless channel as an ordered couple of equations allows
the receiver to dynamically adapt to the time-varying behavior
of the channel in a successful manner. In effect, incorporating
the primitive equation in the AR state space model of the
channel allows a Kalman filter to track statistical variations of

the channel. In this way an improved estimate of the channel
is provided to the particle filter for tracking the channel.

The superiority of the dynamic AR model was particularly
emphasized in the difficult to track, highly time-dispersive
channels. In these conditions, at high signal-to-noise ratios
traditional static models tend to suffer an error-rate floor in
performance. Information-theoretic results from [26] serve to
justify and explain why tracking algorithms which incorporate
a static auto-regressive model tend to produce an error floor.
By contrast, the use of a dynamic auto-regressive model is
seen to overcome the error floor phenomenon. It does so by
being able to adapt the variance of the driving noise in the
state equation according to current channel conditions.

In addition to the results presented in this paper using
simulated channel data, experimental results based on real-life
channel data have also shown that the dynamic auto-regressive
model offers a performance increase relative to the traditional
static auto-regressive model [27].

APPENDIX I
PSEUDO-CODE FOR ITERATIVE PROCEDURE FOR WIRELESS

CHANNEL TRACKING ALGORITHM.

For time steps k, k + 1, k + 2, · · ·
1: Starting from primitive and state posterior estimate for time

k − 1, respectively:

NC(mk−1,Pk−1) and p(hk−1|rk−1)

For some mean mk−1 variance Pk−1, particles hi
k and

associated weights wi
k.

2: Update the prior distribution and perform prediction using
(18)-(20) and (27).

NC(mk−1,Pk−1) → NC(m̄k,Qk)

where,
m̄k = mk−1

Rk = Pk−1 + σ2
wI = Pk−1 +

(1− δ)

δ
Pk−1

Qk = Rk + σ2
vI

3: Using the method of importance sampling, predict the state
density by propagating particles ` = 1, ..., L, from time k− 1

to k using (15),

h`
k = h`

k−1 + µ`
k + v`

k

where, µ`
k ∼ NC(m̄k,Qk)

4: Using the channel decoder, decode the received signal rk,
using predicted channel estimate ĥk. The output of the
detector are the estimated transmit symbols ŝk.

5: Evaluate the weights (8), of the particles obtained in Step 3:

w`
k = w`

k−1

p(rk|h`
k)p(h`

k|h`
k−1)

q(h`
k|h`

k−1, rk)
.

Calculate Neff and resample if necessary. The channel
posterior estimate is given by (6).

p(hk|rk) '
LX

`=1

w`
kδ(hk − h`

k)
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6: Calculate primitive posterior estimate NC(mk,Pk) for time
k using (21)-(22):

NC(m̄k,Qk) → NC(mk,Pk)

where,
mk = m̄k + RkQ

−1
k

h
ĥk − (ĥk−1 + m̄k)

i

Pk = σ2
vRkQ

−1
k

7: Increase time increment k → k + 1, return to step 2.
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