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Impact of Linear Array Geometry on
Direction-of-Arrival Estimation
for a Single Source

Edward J. Vertatschitsch, Member, IEEE, and Simon Haykin, Fellow, IEEE

Abstract—The impact of the linear array geometry on the
direction of arrival estimation accuracy is examined assuming a
single source of illumination and additive white Gaussian system
noise. The analysis was conducted using the Cramer-Rao lower
bound (CRLB), simulations and performance modeling of maxi-
mum likelihood estimation (MLE). Particular attention is paid
to the implementation of the MLE, the threshold signal-to-noise
ratio (SNR), probability of outlier and high SNR mean-squared
error (MSE) performance which are evaluated and compared for
uniform and nonuniform arrays. The conditions under which
trade-offs exist in choosing a particular geometry and their
significance are determined.

1. INTRODUCTION

linear array structure consists of a finite number of

sensors arranged in a single dimension. At a given
instant in time, a narrow-band plane wave originating from a
target in the far field of the array may be represented by the
mathematical model of the complex envelope at the ith
sensor as

s; = aexp {j(6 + 27 sin (¢)x;/N)} (1)
where

A = radio wavelength,

¢ = elevation angle,

a = amplitude of the signal,
6 = unknown phase shift,

and x; is the location of the ith sensor in space. The quantity
27 sin (¢)/\ is referred to as the projected wavenumber, or
just simply, wavenumber, henceforth it will be represented
by the symbol k. The expression for the signal at the ith
sensor may then be simplified as

s;=aexp {J(0 + kx,)}. (2)

Since the wavelength \ acts merely as a scale factor in the
estimation problem, we may develop a normalized system of
parameters that is independent of N. We then measure the
sensor locations in units of \/2. This implies that the small-
est spacing in the array must be less than or equal to one unit

Manuscript received October 14, 1988; revised September 20, 1990.

E. J. Vertatschitsch was with the Communications Research Laboratory,
McMaster University, Hamilton, ON, Canada. He is now with the Boeing
Company, P.O. Box 3999, Seattle, WA 98124.

S. Haykin is with the Communications Research Laboratory, McMaster
University, Hamilton, ON, L8S 4K1 Canada.

IEEE Log Number 9143712.

in the normalized system. In turn, the normalized wavenum-
ber is restricted to lie in the range (—=, ). The normalized
wavenumber has an alternative interpretation. The value £ is
now exactly equal to the observed phase difference (in radi-
ans) between two elements that are separated by the mini-
mum spacing of one unit.

In an electronically agile array requiring maximum sensi-
tivity, each sensor requires a separate receiver. For large
numbers of elements, the overall cost of the array is domi-
nated by the cost of the active elements and may become
prohibitively expensive. Since the field of view constrains the
minimum spatial sampling rate, it may be possible to de-
crease the beamwidth to less than that of a uniform array
using nonuniform spacing. It then becomes a question of
maximizing performance for a given, finite number of sen-
sors (cost) by varying the array geometry.

In this paper, we are primarily concerned with high-
accuracy estimation in the context of a single source of
illumination with a single temporal snapshot. (A companion
paper [1] discusses the effect of multipath.) In particular we
are interested in wavenumber estimation accuracies signifi-
cantly better than a beamwidth. This objective is attained by
a judicious placement of the sensors. The array geometry’s
impact on estimator performance and the trade-offs encoun-
tered in choosing certain configurations would therefore need
to be investigated.

The paper is organized as follows. Section Il provides a
brief background of the development of nonuniform arrays.
Section III describes the maximum likelihood estimator
(MLE) and Section IV describes the implementation require-
ments for optimal performance. In Section V, we examine
the single-target location problem using simulations with the
MLE for uniform and nonuniform arrays. In Section VI, we
compare the figures of merit and summarize the impact of
array geometry on the direction finding problem. The results
build upon concepts first described in the classic paper by
Rife and Boorstyn (R-B) [2]. Their basic discussion of the
estimation error dealt exclusively with uniform structures.
Those concepts are extended here to arbitrary array configu-
rations, of which the uniform array is a special case.

II. BACKGROUND

The literature provides a rich assortment of descriptions
for the structures in which the spacing between elements is
unequal. Some of the most common are: nonuniform, sparse,
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TABLE 1
ARRAYS TO BE EVALUATED
Number of Array
Sensors Location Property

5 0 1 2 3 4 U

0 1 4 7 9 MR

0 2 7 8 11 NR & UR
6 0 1 2 3 4 5 U

0 1 2 6 10 13 MR

0 4 10 12 17 NR & UR
7 0 1 2 3 4 5 6 18)

0 1 2 6 10 14 17 MR

0 6 9 10 17 22 24 UR

0 1 4 10 18 23 25 NR
8 0 1 2 3 4 5 6 7 U

0 1 2 11 15 18 21 23 MR

0 8 18 19 22 24 31 39 UR

0 1 4 9 15 22 32 34 NR
9 0 1 2 3 4 5 6 7 8 U

0 1 2 14 18 21 24 27 29 MR & UR

0 5 12 25 27 35 41 44 NR
10 0 1 2 3 4 5 6 7 8 9 U

0 1 3 6 13 20 27 31 35 36 MR

0 7 22 27 28 31 39 41 57 64 UR

0 1 6 10 23 26 34 41 53 55 NR

U—uniform, MR—minimum redundant, UR—unrestricted, NR —nonredundant

thinned, aperiodic, and space-tapered arrays. In addition,
many authors simply refer to the structures according to the
class construction or array design algorithm. In the 1960’s,
the advantages of eliminating the restriction of equal spacings
became apparent. One of the prime motivations was the
reduction of the number of elements required to obtain a
desired antenna beam pattern, primarily for sidelobe reduc-
tion, referred to as thinning. Another common application of
nonuniform arrays was the increase in the effective band-
width through variable spacing, called broad-banding the
array. The ‘‘optimum’’ array structure is very specific to
the particular problem being considered. The formulation of
the constraints greatly influences the final solution. In very
few formulations was a closed-form solution found. A good
summary of the early work on nonuniform arrays is provided
in [3].

One of the first studies of redundancy construction of
nonuniform arrays is that of Moffet [4], in which the case is
made for maximizing the resolution of an array for a given
number of sensors. The structures discussed, are actually
those proposed by Leech [5], in a mathematical paper whose
original intent was not the array problem. In these construc-
tions we do not impose an aperture-length constraint on the
array. Rather, for a given number of sensors, one or more
““best’’ arrays are proposed. The conceptual solution is
straightforward; however, the procedure is difficult and com-
putationally intensive to implement for large numbers of
elements. Therefore, suboptimal ways of extending these
structures for very large numbers of elements have also been
proposed [6]. Recently, the minimum-redundant arrays cited
by Moffet have been obtained from other interpretations as
well [7], [8].

An alternative procedure to the minimum redundant sam-

pling was proposed in [9] and is known as a nonredundant
construction. The grid-search method provided a set of arrays
that were very nearly the minimum-length arrays having zero
redundancy. Other algorithms have been developed which
generate the minimum redundant arrays exhaustively and
with minimal computational effort [10}-[14].

Unfortunately, the literature lacks a detailed study compar-
ing performance of the redundancy-based array structures.
Moreover, no consideration has been given to the trade-offs
involved in choosing one of these thinned arrays over a
uniform array. It is this impact of array geometry which we
wish to explore in this paper and, thereby, provide a compre-
hensive understanding of the behavior of nonuniform arrays
for the direction-of-arrival estimation problem. Table I pro-
vides a description of the nonuniform arrays that will be
evaluated in the remainder of the paper.

III. MAXIMUM LIKELIHOOD ESTIMATION

We follow a similar approach to that provided by R-B [2],
where the concepts were developed for the frequency estima-
tion problem using uniformly sampled time-domain data.
Many of their ideas are generalized here for arbitrary linear
array structures. Briefly, the problem is the determination of
an estimate of the wavenumber from noisy data. We assume
that the target wavenumber and complex amplitude are un-
known parameters represented by k, and c,, respectively.
The normalized wavenumber is assumed to lie in an interval
(—m, ). The signal received at the ith sensor is given by

z;=aexp {Jj(8 + k. x;)} +w, (3)
where w; is complex additive white Gaussian noise, with

statistically independent real and imaginary components. The
MLE of wavenumber for a single target namely, k, reduces
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to that of obtaining the value of k that maximizes the
objective function

2

A(k) = ’z:,:l z;exp { —jkx;}| . 4)

When the x; are uniformly spaced, (4) is recognized as the
discrete Fourier transform (DFT) of the received data {z,}.
For nonuniform arrays in which the sensors lie on an integer
grid, the expression may be interpreted as a padded DFT.
Specifically, the received data vector may be padded with
zeros wherever a sensor location is missing.

Several techniques exist for bounding the mean-squared
error (MSE) of this problem. We will concentrate on the
Cramer-Rao lower bound (CRLB) for unbiased estimators
{15], which has been shown to be valid for sufficiently large
signal-to-noise ratio (SNR). Let I" be defined as the elemen-
tal SNR:

P =le,/(20%) (5)

where 202 is the white noise power. Application of the
CRLB results in bounding the variance of any unbiased
estimator as

var {(k, — /Ac)} = (2rs)”! (6)

where the spread is given by S = (x, — C)? and C is the
centroid of the array given by Zx; /N. The threshold SNR is
defined as the value of SNR for which the MSE of the
estimator differs from the CRLB by 1 dB.

The maximization of (4) is a nonlinear problem. We
initially search the wavenumber space on a coarse grid,
determining the approximate location of the maximum. Upon
locating this point, a fine grid search is then performed over
the coarse intervals on either side. The fine search is repeated
in multiple levels until the desired accuracy in estimation is
obtained.

The objective of the coarse search is to locate the global
maximum. In this way, the fine searches are implemented
assuming the surface to be convex over the previous search
interval. This then necessitates some knowledge of the den-
sity required for the coarse search. The determination of a
sufficient density is made from a statistical viewpoint. A
given performance measure is evaluated using a large number
of simulations for each of several coarse search densities. At
the point for which the measure does not change signifi-
cantly, we say that for practical purposes, the coarse search
density is adequate.

In their work, R-B [2] concluded a density of N points in
27 was adequate for uniform arrays of N elements in which
the MSE as a function of SNR was used as the performance
measure. In this paper, we show that this particular choice of
experimental framework predicted a density and performance
that is overly optimistic in its determination of the threshold
SNR and the probability of outlier. The derivations and
simulations that supported these findings were performed for
a fixed frequency, and the coarse search estimates were made
at uniform spacings, one of which coincides with the true
location of the tone. When only N coarse search points in 2 7

Array Gain Pattern

—— 7 uniform
- 7 nonredundant

relative gain

o
~3.14 ~1.57 0 1.57 314
wavenumber

Fig. 1. Comparison of the standard gain patterns associated with seven-

element uniform and nonredundant arrays.

were used, the remaining points fell at the nulls (in the
absence of noise) of the DFT. This is obviously a fortuitous
circumstance that cannot be expected to occur in our prob-
lem. In general, none of the coarse search points will coin-
cide with the true location of the tone frequency, and many
may also be located near the peaks of sidelobes of the DFT.
In the next section we extend the R-B concepts to nonuni-
form arrays.

It is of interest to examine the beam pattern of the array
structure. The beam pattern, or array power gain pattern in
our notation, is defined by

N 2

5 3 e Lk )

i=1

G(k) =

with k varying over the interval (—m, ). This result is
proportional to that obtained for the objective function of the
MLE operating in infinite SNR when the target is at bore-
sight, k- = 0, as given in (4). The beam patterns for seven-
element uniform and nonredundant arrays, described in Table
I, are presented in Fig. 1. The pattern for the uniform array
is very regular, with sidelobes tapering as the distance from
boresight increases. The nonredundant array’s behavior, on
the other hand, is somewhat more erratic, with the peak
sidelobe being relatively larger than its uniform counterpart.
The other principal observation discerned from Fig. 1 is a
significant reduction in the width of the main lobe for the
nonredundant array. The standard beamwidth, in physical
space (measured in radians), for an aperture of size L is
defined as A/L. Translated to the normalized wavenumber
space, it becomes 27 /A where A is the ratio of L to the
minimum spacing used.

IV. MLE IMPLEMENTATION REQUIREMENTS

From (4) and Fig. 1, we see that the objective function will
have multiple maxima. The coarse search must be dense
enough such that the maximum located should correspond to
a point on the main lobe. Under ‘‘noisy’’ conditions, it is
difficult to determine the required density that would guaran-
tee this; however, we may use a pragmatic approach. The
density will be assumed adequate if the ‘‘average” perfor-
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Coarse Density Effects
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Fig. 2. Effects of the coarse search density on the performance estimation
of seven-element uniform and nonredundant arrays.

mance (i.e., mean-square estimation error, or threshold
SNR), is not degraded. The result of [2] for uniform arrays,
in which a density of N coarse points for the N element
uniform array was used, is effectively one sample per
beamwidth. As an initial starting point, we could consider a
similar density for the coarse search. We expect that since
the nonredundant arrays have larger sidelobe levels, they
will require higher densities than the corresponding uniform
arrays.

The MSE for the two seven-element arrays is presented in
Fig. 2 for different coarse search densities. The target
wavenumber was varied over an interval of (- /2, 7 /2),
and the search was carried out over (—m, =), using 2'6 =
65536 simulations for each value of SNR and coarse search
density. This variation in wavenumber was used to prevent
the true wavenumber always coinciding with one of the
coarse sampling points. After locating the coarse maximum
position, a fine-grid search was performed extending one
interval to either side of the candidate position. The simula-
tions were carried out primarily in the threshold regions in
order to clearly observe the effect.

The results with the seven-element uniform array show a
density of 14 points to provide sufficient accuracy in deter-
mining the variation of MSE as a function of SNR. For large
SNR, seven points distributed over 27 were found to be
sufficient to reach the CRLB. In the threshold region, the
seven-point coarse search requires up to an additional 1 dB in
SNR. This demonstrates the necessity of using more points in
the coarse search for an accurate characterization of perfor-
mance when the target position may lie at any point within an
interval. The fact that in [2] all but one of the sampling points
occurred at the nulls of the beam pattern permitted a simple,
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Fig. 3. Histogram of estimation errors for three different values of SNR

using a seven-element uniform array. Superimposed is the standard beam
pattern.

analytical derivation of outlier performance. This will be
reexamined later in the paper.

Turning next to the nonredundant array, the results indi-
cate that for a coarse search having two points per beamwidth
the threshold region is increased by approximately 0.5 dB in
SNR. For a density of three points per beamwidth, the
performance is in agreement with the higher densities within
statistical accuracies. This increased density requirement was
expected as the peak sidelobe levels of the estimator power
gain pattern are larger than in the uniform array and it is
therefore more difficult to ascertain the particular lobe having
the global maximum.

It is important to note that for both the uniform and
nonuniform arrays, when the high density coarse search was
implemented the estimator performance was virtually unaf-
fected (within statistical uncertainty) by varying the target
location. Therefore, the results would have been similar if
the target were restricted to boresight only. The effect was
only clearly visible when one sample per beamwidth was
used in the coarse search, in which case the exact locations of
the target signal and the coarse search test points were
critical.

The examination of the maximum likelihood estimator in
the threshold region provides meaningful insight into the
error process. The probability density function of the
wavenumber estimation error is gauged from simulation re-
sults by generating a histogram of the errors. For each value
of SNR, 220 = 1048 576 estimates of the wavenumber were
generated. During each investigation, two histograms were
accumulated. The first involved 256 bins covering the region
of (—m, 7). The second consisted of 64 bins spread over the
‘“‘main beam’’ covering the interval (—B/2, B/2) where B
is the beamwidth defined earlier as 27 /A.

The results shown in Figs. 3 and 4 compare the arrays U7
and NR7. The experiments were performed at the same
elemental SNR values, —2, +1, and +4 dB. For clarity, the
+1 dB SNR was not displayed for the nonredundant array in
Fig. 4. The histogram was normalized by dividing the count
in each bin by the total number of trials. The logarithm of the
antenna gain pattern is presented as the solid curve in each
figure for comparison.
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Histogram of Errors, NR—7
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Fig. 4. Histogram of estimation errors for two different values of SNR
using a seven-element nonredundant array. Superimposed is the standard
beam pattern.
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Fig. 5. Expanded histogram of the region associated with the main lobe of

the gain pattern for a seven-element uniform array. Included is the equiva-
lent Gaussian probability distribution.

The estimator, defined in (4), is closely related to the gain
pattern, defined in (7). Both Figs. 3 and 4 indicate that large
errors are more likely to occur near a peak of the sidelobe
gain pattern than at the null. In other words, noise increases
the likelihood of one of the sidelobes being greater than the
area surrounding the main beam. When this occurs, the error
is termed an outlier. The probability of an outlier is defined
as the probability that the error in wavenumber falls outside
the main beam of the array.

For errors within the beamwidth of the array, the perfor-
mance is more conventional as shown in Figs. 5 and 6.
Specifically, we may state the following: 1) for large SNR’s,
the predicted performance may be modeled as a Gaussian
distribution of zero mean and variance given by the
Cramer-Rao lower bound; 2) for low SNR values, the
Gaussian distribution is not as good an approximation since
the CRLB standard deviation becomes comparable to the
beamwidth of the array.

While the mean square error is certainly an important
measure of performance, it is not the only consideration. We
can also view the errors as coming from one of two distribu-

Main Beam Histogram, NR-7
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Fig. 6. Expanded histogram of the region associated with the main lobe of
the gain pattern for a seven-element uniform array. Included is the equiva-
lent Gaussian probability distribution.

tions. With probability p, (a function of SNR), it is an
outlier, and with probability (1 - p,) it is Gaussian dis-
tributed with variance given by the CRLB. The threshold
SNR is determined to be the minimum SNR at which the
system should be operated. Rather than choose the point for
which the MSE is 1 dB greater than the CRLB, an array
designer may require a certain maximum probability of out-
lier occurrence. When an outlier occurs, it is almost as likely
to make extremely large errors as it is to make them just
outside a beamwidth. In this region, the probability does not
fall off as a Gaussian would, and the existence of very large
errors may be critical to the designer.

We return to the model used by R-B [2], for which an
N-point coarse search was implemented on an N-element
uniform array. Provided one of the coarse search points falls
on the true target location, their definition of outlier is the
event for which one of the incorrect values of the coarse
search would provide a greater value of the objective func-
tion than the one corresponding to the true location. These
assumptions allow the probability of outlier to be calculated
analytically and the result [2, eq. 60] is reproduced here
(using our notation) as

1 N Ni(=D)"

po:ﬁ m=1 (N — m)tm!

(m - 1)

exp { -NT
m

}. (8)

For high SNR, the equation is dominated by the term m = 2

" exp{ -T2} )

Do =

or taking logarithms,

-1)/2). (10)

This approximation is asymptotically tight with increasing
SNR. The probability of outlier given by (8) and the approxi-
mation given by (9) are in reasonable agreement for values of
Dy as large as 0.01 for arrays of the size considered here.

Unfortunately this definition of an outlier is specific to a
particular set of parameter circumstances. In general, the

N
In(p,) = —EI‘+ln((N
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Outlier Probability, U—8
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Fig. 7. Probability of outlier for an eight-element uniform array showing

the overly optimistic results obtained using [2]; ‘‘true’’ performance is
indicated by the 128 point coarse search.

target will not coincide with one of N points in the coarse
search region, and therefore we find an increased number of
points are required in the initial grid search. Finally, it is also
not suitable for extensions to nonuniform arrays.

We will show, however, that the trend indicated by (9) is
nevertheless accurate for the general problem of arbitrary
location of the target for uniform and nonuniform arrays.
That is, for p, < 0.01, we find that the probability of outlier
decreases as a simple exponential in SNR.

V. ResuLTs

We begin by considering the result for uniform arrays.
Positioning the target at boresight, and using a proper search
implementation, we determine the probability of outlier ver-
sus SNR. As a point of reference, and to validate the
previous expressions, we also implement the search de-
scribed in [2]. The results are presented in Fig. 7 for the
eight-element uniform array, for which we plot p, (on a
logarithmic scale) versus I' (on a linear scale). The error bars
shown in Fig. 7 are the estimates of the standard deviation of
the value of log ( p,), determined statistically.

The solid curve in Fig. 7 is a plot of (10) which fits the
eight-point coarse search quite well. The ‘‘true’’ perfor-
mance is indicated through the use of a 128-point coarse
search. For p, < 0.01, we fit In(p,) to a linear curve in
SNR. The results of the calculation are displayed as the
empirical fit in Fig. 7. The fitting was performed as a
weighted least-squares fit using orthogonal polynomials.

The probabilities of outlier were found in two stages,
initially using 2'#-point simulations which would provide
reasonably accurate estimates of the probabilities in the larger
regions of p,. The region having lower values of p, were
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then simulated again with a greater number of trials. The
fitting process used those data points for which p, < 0.01,
and at least 25 outliers occurred. The 25-outlier requirement
restricts the range of p, to values above 25/ N, where Ng is
the number of simulations. Typically, for Ny equal to 2'%,
this translates to fitting values of p,, in the region 10™* < p,
< 1072, The error bars plotted are estimates of the root
mean square (RMS) uncertainty of the observed quantity.
We observe from Fig. 7: 1) although the values of p, >
0.01 were not chosen for the fitting, they still lie very close
to the empirical curve for values of p, as large as 0.1; and 2)
the R-B simulations were optimistic, both in the probability
of outlier and the rate at which it falls off. Their resuit
predicted a curve in this region of SNR to be of the shape

Drs = 3.5exp(—4T) = exp(1.25 — 4T).  (11)
The fit (we performed) indicates the true behavior to be

Po=cexp(a+ b(T — B)) =exp(0.53 — 3.318T) (12)

where
= —5.830 + 0.020 (13)
= —3.318 + 0.062 (14)
and
B = 1.9150. (15)

The value of 8 was chosen such that the quoted standard
deviations of uncertainty in @ and b are uncorrelated. The
intercept

a—-bB=053=x=0.12 (16)

and the slope coefficient b from (14), are shown to be
significantly poorer under the general conditions of the source
location problem than is obtained by using the R-B results
directly.

A similar analysis of simulation results for the seven-
element nonredundant array is now made. The observed
probability of outlier and the exponential fits are presented in
Fig. 8, which clearly shows the increased probability of
outlier for the nonredundant array. Not only is it larger, but
it also falls off at a slower rate with SNR than it does for the
uniform array. We may define a new threshold SNR for
architecture comparisons as the point at which the probability
of outlier equals a required specification. This provides a
critical measure in evaluating array structures for specific
applications.

Using the fit results, we can invert the function to find the
expected SNR corresponding to the required p,. For values
of p, within the fitting range, this will be an interpolation
with very accurate results. However, we may now also
extrapolate to much lower values of p, than could be easily
observed. For these results, the estimated error of extrapola-
tion grows as the value of p, decreases. The advantages of
this technique for moderate extrapolations will be a reason-
able estimate of threshold SNR, for which the outlier proba-
bility may be impractical to simulate. It also provides an
estimate of the required SNR, and once a designer has
narrowed down the array configurations to be considered, a
more accurate simulation may be performed.
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Fig. 8. Empirical fitting of the outlier probability determined by simulation

for seven-element uniform and nonredundant arrays.

The selected arrays described in Table I, are examined for
the probability of outlier variation with SNR. The statistical
error analysis and goodness of fit criteria are discussed in
[16] where the model is found to be justified within the
statistical errors based on a large number of these experi-
ments. There did not appear to be any correlation with the
number of elements or with the array structure. From these
results, we feel justified in proposing the single exponential
fit for probability of outlier versus SNR for sufficiently low
values of p,.

The observations are reproduced in Table II. For each
array, the interpolated/extrapolated array SNR correspond-
ing to values of p, equal to 107> and 10 ¢ are determined
from the inverse of the fit. For all arrays, the accuracy of the
inverse fit at p, = 107° is better than 0.1 dB in SNR, while
at 1073 it was accurate to better than 0.05 dB.

In Table II, we have introduced the new term, sampling
gain. It is defined as the savings in SNR (in decibels)
required to obtain a given single-target MSE performance for
the array under consideration when compared to a uniformly
sampled array consisting of an equal number of elements and
an equivalent field of view. The sampling gain is independent
of the value of the MSE chosen since the calculation is
made at values of the SNR beyond the threshold region at
which the CRLB may be used to determine performance. If
the minimum spacing is chosen to be one unit for both the
uniform and nonuniform arrays consisting of N elements, the
sampling gain becomes

G, = 10log (S) — 10log (N(N? - 1)/12)

(17)

where the spread of the array under consideration, S, was
defined in (6). The significance of the sampling gain is that
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the expected savings in SNR (for a required MSE perfor-
mance) may be translated into improved performance such
as: greater range for a given output power; improved estima-
tion accuracy for a given quality of receiver; or it may be
used to reduce the number of elements and the cost of the
array. We show a potential savings of 16.6 dB in elemental
SNR is available when comparing 10-element uniform and
nonredundant arrays. For a sufficiently large SNR such that
both arrays were operating at their respective CRLB’s, the
accuracy improvement is approximately a factor of 45 for the
same elemental SNR.

VI. DiscussioN

It is interesting to compare the arrays of different numbers
of elements and which is the reason for using the array SNR,
NT and not the elemental SNR, I'. We obtain the interesting
result that, for all uniform arrays measured, for p, = 10°¢,
the required array SNR is 15.4 dB + 0.1 dB; this includes
five- to 32-element uniform arrays. In this region, the re-
quired array SNR is virtually independent of the number of
elements. We find it is also possible to make similar state-
ments about the nonuniform arrays. All minimum redundant
arrays, labeled MR, required 17.2 + 0.1 dB of array SNR,
again well within the measurement accuracy. The nonredun-
dant arrays required 17.3 dB + 0.3 dB in all cases. We note
that these arrays extend from 11 to 55 units of length.

The behavior for the eight- and 10-element unrestricted
arrays using the MLE is particularly interesting. They re-
quire larger apertures, provide less sampling gain and have
poorer threshold SNR values than the equivalent nonredun-
dant arrays. We may therefore conclude that there is no
advantage in choosing these arrays over the nonredundant
ones. That is, even though the required aperture is larger, the
array geometry is inefficient in terms of mean squared error
performance and threshold SNR.

The nonredundant arrays generally exhibit a threshold
performance not larger than 0.3 dB in excess of the minimum
redundant arrays and yet provide up to an additional 3 dB of
MSE reduction (for N = 10). Generally, we would expect
that the nonredundant arrays would be preferred over the
other nonuniform arrays considered. In terms of probability
of outlier, the results are similar. The significant trade-off is
for the uniform arrays versus the nonredundant ones. The
nonredundant arrays require approximately a 2 dB larger
elemental SNR to provide the same probability of outlier as
the uniform arrays. The benefit is an improved MSE at the
higher SNR values ranging from 9.1 dB for the case N = 5,
to 16.6 dB for N = 10. That is, provided the data can be
averaged (filtered) for the additional time, or if the SNR is
above the critical point for one snapshot, the 10-element
nonredundant array will provide a mean square estimation
error 45 times smaller than the 10-element uniform array.

As mentioned earlier, the increased probability of outlier
for the nonuniform arrays is due to the increased sidelobe
level. In situations in which multiple temporal snapshots may
be used, it is possible to effectively reduce the sidelobe
problem and hence the outlier probability using other tech-
niques (Capon’s method) as described in [17].



VERTATSCHITSCH AND HAYKIN: DIRECTION-OF-ARRIVAL ESTIMATION

583

TABLE 11
SAMPLING GAIN AND THRESHOLD CoMPARISON UsING ARRAY SNR, NT

Number of Array' Sampling Gain p=10">@SNR p=10"°@SNR Threshold® SNR

Sensors Type (dB) (dB)? (dB)* (dB)
5 U 0.0 12.4 15.4 12.6
MR 7.7 14.4 17.3 15.7

NR & UR 9.1 14.5 17.3 16.0

6 U 0.0 124 15.5 12.7
MR 9.0 14.4 17.1 15.9

NR & UR 11.2 14.6 17.4 16.3

7 U 0.0 12.5 15.3 13.0
MR 9.8 14.5 17.3 14.2

UR 12.1 14.6 17.3 16.4

NR 13.7 14.8 17.6 17.0

8 U 0.0 12.5 15.4 13.2
MR 11.7 14.5 17.2 16.4

UR 14.0 14.6 17.3 16.7

NR 14.9 14.6 17.1 16.6

9 U 0.0 12.6 15.4 13.3
MR & UR 1.7 14.5 17.2 16.5

NR 15.9 14.5 17.1 16.7

10 U 0.0 12.6 15.5 13.5
MR 13.5 14.4 17.1 16.6

UR 16.3 14.5 17.0 16.8

NR 16.6 14.5 17.0 16.7

16 U 0.0 12.8 15.4 14.0
32 U 0.0 13.0 15.4 14.6

! Arrays correspond to those listed in Table 1.

2Array SNR, NT, required to obtain specified probability of outlier, determined from empirical fit.
® Threshold array SNR determined by MLE for target at boresight and search over (—, ).

VII. SUMMARY

The results of the research reported herein indicate that a
trade-off in performance measures may be required when
choosing a particular geometry. A significantly improved
mean squared error performance may be achieved due to the
larger aperture of nonuniform arrays, although the actual
geometry is still important. However, this is accompanied by
a modest increase in the threshold SNR for these arrays,
primarily due to increased sidelobe levels. The probability of
outlier also increases for the same reason.

The sampling gain, defined as the savings in SNR for
achieving a specified MSE at high SNR could be obtained
directly from the CRLB (MLE estimation coincided with the
CRLB for sufficiently large SNR). In the event of single
targets in additive white Gaussian noise, the sparse arrays
provide significant improvement over uniform arrays of the
same number of elements and the same field of view.

The trade-off occurs when additional performance estima-
tors are considered such as the probability of outlier defined
as the probability of an estimation error greater than the
beamwidth of the array. The probability of outlier can be
approximated by a simple negative exponential in SNR for
values of p, < 0.01. For single target problems, the uniform
arrays have lower values of p, in this region and decrease
more rapidly with increasing SNR than for the sparse arrays.

This outlier probability was shown to account for the thresh-
old effect in MSE and therefore similar statements apply.

In general the nonredundant arrays provided improved
MSE improvements with virtually identical outlier perfor-
mance when compared to minimum redundant designs, and
therefore will usually be the design of choice. For an outlier
probabilities of one part in one million, the nonredundant
arrays required 2 dB greater SNR than uniform arrays but
could provide up to 16.6 dB improvement in MSE
(for N = 10).
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