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This paper may be viewed as the culmination of a radar clutter
classification research program that has spanned over 15 years. In
particular, we present the results of an experimental study aimed
at the classification of radar clutter encountered on ground-based
coherent scanning radar systems used for air traffic control. The
clutter signals of interest are primarily those due to birds as well
as clouds and weather systems. These two sources of radar returns
represent potential hazards to aircraft safety. The aim of the clutter
classifier is therefore to vector aircraft around such areas.

The clutter classification presented herein is based on a set of
features derived from a sequence of reflection coefficients com-
puted using Burg’s multisegment algorithm. These features contain
two types of information, namely, signal strength, and Doppler.

Two feature classifiers were evaluated experimentally:

1 A parametric Bayes classifier, assuming that the features
are distributed according to the multivariate Gaussian dis-
tribution.

2 A neural network classifier that makes no such assumptions.
Training of the neural network classifier is achieved using
the popular back-propagation algorithm.

The classification is performed using real-life radar data contained
in a single resolution cell and collected during the course of a
single antenna scan.

I. INTRODUCTION

The two most common aviation hazards to aircraft are
weather and birds. The most dangerous forms of weather
are heavy precipitation (in which airframe icing frequently
occurs) and wind-shear related phenomena (including thun-
derstorms). Aircraft collisions with birds can also result
in serious damage, crashes, and fatalities. Indeed, periods
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of heavy night-time migration during the spring and fall
(at airports located on bird-migration corridors) present a
major problem for night flying jet training operations and
may require a complete halt to such activities. Traditional
radar detection schemes consider all nonaircraft targets as
undesirable “clutter,” which must be suppressed to enhance
the visibility of aircraft within the clutter areas. The moving
target indicator (MTI), used for such a purpose, is essen-
tially a Doppler filter designed to remove all nonmoving
echoes such as ground clutter. Fast-moving rain and storm
systems, however, break through the filter and appear on the
processed displays as targets, often overloading the digital
target processing units. The so-called moving target detector
(MTD) consists of a bank of Doppler filters, each tuned to a
different frequency. Separation of targets and clutter, which
generally travel at different velocities, can thus be achieved
and the probability of detection increased considerably.

In this paper, we take a different approach in that an
attempt is made to classify the different forms of radar
signals, rather than merely detect moving targets. It can be
said that detection is simply classification with two classes,
and thus this work is a generalization of the target detection
problem.

A. The Radar Clutter Classification Problem

A generic block diagram of the classifier is shown in
Fig. 1. The measurements available from the surveillance
radar are the amplitude and phase of the received echo
pulses. Pulses are transmitted at regular intervals, and
even though the radar antenna is continuously rotating, the
transmitted beam is wide enough to provide several echoes
from the same source before the beam has scanned past it.
This time series of echoes thus contains information on the
size and velocity of the scatterers, as well as their internal
motion. Since not all of this information is unique to any
one clutter type, those features that can reliably identify the
clutter need to be extracted and passed on to the classifier.

A central question for the classification of clutter con-
cerns the selection of features, that is, which features @if
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Fig. 1. Block diagram of the classifier.

any) are present in coherent radar returns and able to
accurately identify each clutter type. The amplitude of
the returns is related to the radar cross-section (RCS) of
the target and, in the case of distributed clutter, the radar
reflectivity per unit volume. It is, however, also a function
of the angular position of the target within the antenna beam
pattern, which cannot be determined without knowledge of
the altitude of the target. This knowledge is generally not
available in surveillance radars and as a result, no definitive
statement can be made about the target size, regardless of
the amplitude of the returns.

The phase difference between successive returns (or,
more precisely, the rate of change of the phase or Doppler
frequency) is a measure of the radial velocity (or range
rate) of the clutter or target. As such, it does not reveal
much about the clutter either, except in the case of ground
clutter which is never expected to deviate much from zero
velocity. Finding zero radial velocity does not, however,
prove that the clutter is ground-based; it simply makes it
more likely. Targets moving tangentially to the radar will
also show a zero range rate. In addition, a phase shift of
integer multiples of 27 radians between successive pulses
will appear as zero Doppler frequency and hence zero range
rate. Such aliasing will further reduce any uniqueness that
might have been contained in the radial velocity, especially
for low pulse repetition frequencies (PRF).

Besides radial velocity, computing the spectrum of the
sample series will also reveal the “purity” of the velocity.
The spectral spread is an indication of the presence of
sidebands to the Doppler frequency itself. There are a
number of causes for spectral spread. First, there is the
modulation of the time series by the azimuth gain pattern
of the main scanning beam, which is usually approximately
Gaussian or sin(z)/x. A reduction in the number of sam-
ples available from the target would be the result of a
reduced number of target hits per beamwidth, which in turn
causes a widening of the spectral spread. Another cause is
amplitude modulation resulting from pulse-to-pulse scintil-
lation, which results from rapid changes in the observed
radar cross-section or reflectivity (target glint). Internal
motion, or instantaneous deviation from the average ve-
locity will manifest itself as frequency modulation with the
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potential of large spectral spreads. The presence of multiple
scatterers and hence multiple frequencies leads to both
frequency and amplitude modulation. This is particularly
true for windshear conditions in weather systems, and large
numbers of birds within a radar resolution cell moving in
different directions and at different speeds. Such internal
motion has most certainly different characteristics for the
various clutter types and should provide the basis for any
feature set, provided of course that it is not completely
obscured by the scanning modulation.

Given the feature vector y, the classifier must then decide
which radar clutter class ¢; the signal vector z belongs to.
The traditional method for the design of the classifier is
to use a Bayes formulation of the classification problem.
The solution so obtained usually assumes a multivariate
Gaussian distribution [1]. Alternatively, we may use a neu-
ral network classifier, the design of which is derived without
any such assumption. Accordingly, a neural network clas-
sifier may outperform a Bayes classifier for non-Gaussian
features. Both classifier types are considered in the paper.

The body of the paper is organized as follows. Section
11 presents a historical perspective of the radar clutter
classification problem and related issues. In Section III we
describe the important features of radar as a sensor in an air
traffic control environment. This is followed by a discussion
of physical phenomena in radar clutter and targets in
Section 1V, with emphasis on the spectral contents of radar
returns. That material provides the physical basis for the
discrimination between the different radar clutter classes.
Section V highlights several issues relating to the collection
of radar data used in subsequent experimental studies. In
Section VI, we describe the feature selection/extraction
procedure, with emphasis on the multisegment Burg algo-
rithm. In Section VII we present the performance evaluation
of a classical Bayes classifier. For the neural network
approach, the popular back-propagation algorithm is used.
The performance evaluation for this nonlinear classifier
is presented in Section VIII. The paper concludes with a
discussion of results in Section IX. Two appendixes are
included at the end of the paper, one summarizing the
specifications of the radar used for data collection, and the
other dealing with experimental evidence for the presence
of bird clutter.

II. HISTORICAL PERSPECTIVE

This section presents a brief review of the developments
leading up to the current state of research into radar clutter
classification, particularly as it concerns air traffic surveil-
lance radars. The presentation is essentially chronological
although, in the interest of cohesiveness, independent disci-
plines are discussed under their own section headings. The
history of radar itself is not addressed here. Skolnik [2] has
prepared a brief history and discussion of the current state
of radar.

A. The Desire to Classify Radar Targets and Clutter

The desire to classify dates back to the earliest days of
radar experimentation, when it was found that “spurious”
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or clutter echoes from airborne scatterers such as clouds
could be sufficiently strong to obscure the real targets of
interest: aircraft. There was also the war-time need for
the identification of friendly and enemy aircraft and, to
a lesser extent, the need to identify the type of aircraft.
A solution to the latter problem was quickly found by
installing transponders on board aircraft as part of a system
called Identification, Friend or Foe (IFF). This system is
still in use today and has found application in air traffic
control (ATC) systems as a secondary surveillance radar
(SSR) or, more formally, the Air Traffic Control Radar
Beacon Systems (ATCRBS) [3]. While this system provided
aircraft visibility in all kinds of clutter (and still does), it did
nothing for the identification of clutter or aircraft without
transponders, and radar operators were still required to use
their judgment and experience with unprocessed radar data
displays [4].

After the Second World War, when radars became
more powerful and used higher and higher frequencies,
cluter problems also became greater and various clutter-
suppression techniques, including MTI were devised. At the
same time, researchers devoted more time to the study of
“angels,” that is, unknown and unidentifiable radar echoes.
Many meteorological conditions were relatively easy to
correlate with radar observations, but the realization that
many of these “angels” were birds and even insects, came
more slowly [4], [5]. With that realization also came an
interest by ornithologists to study birds using radar, which
grew throughout the 1960°s and continued into the early
1970’s [6]. Aviators also became interested in separating
birds from aircraft, particularly with the advent of high-
speed jet aircraft and the phenomenal increase in air traffic
[7]. The use of radar to help avoid bird strikes seemed
logical, especially since most busy airports use radar for
air traffic control [8].

Most of the clutter identification techniques in current use
are based on visual examination of PPI displays by trained
radar operators. If the unprocessed radar video is available,
an “educated guess” may be made with a reasonable prob-
ability of success. More reliable are photographic records,
either in the form of time-lapse motion pictures or single
time-exposures, where bird tracks become readily apparent.
Unfortunately, the time delay involved in processing the
photographs limits their use for bird-strike avoidance. They
can, however, be very useful for ornithologists in migration
studies, and for migration forecast used in the planning of
flight operations [9], [10].

Bird-strike avoidance programs will undoubtedly ben-
efit from migration studies and forecasts, but immediate
information will always be required. While acute prob-
lems at airports can be managed, to some extent, with
visual observations and bird-scaring techniques, en-route
avoidance would be much more successful if up-to-date
radar warnings can be issued [8]. Unfortunately, modern
target detection and clutter suppression techniques remove,
if not all of the clutter, much of the identifying information
and make manual clutter classification quiie unreliable.
Synthetic radar displays are designed to eliminate clutter
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and leave the radar operator with little or no data on
airborne hazards, apart from what is automatically detected
and displayed with special symbols. Research into auto-
matic clutter classification thus arose from this need to
present airborne hazard information to the radar operator
in real time.

B. Automatic Classification Attempts Using
Noncoherent Radar Data

Most early radars provided only signal strength (signal
amplitude) with which a detection decision could be made.
Resolution was usually too low to form true “images” of
the target, and the only information that could be obtained
about the target was a lower bound on its maximum
length [3]. The actual value was clearly a function of
orientation and only broad categories of targets could
be identified. Even today, the resolution of surveillance
radars is low enough that practically no information about
target size is available. What is available, however, are
signal amplitude and its spatial distribution, amplitude
modulation, polarization dependence, scan-to-scan motion,
and fluctuation characteristics. While probably insufficient
for the identification of targets, these parameters provide
much information about clutter.

Much work has been done to find amplitude signatures of
bird echoes and several good reviews have been published
on this subject [5], [6], [11]. These studies found wingbeat
modulation frequencies of a few Hertz to tens of Hertz,
which have been observed over periods of several seconds.
The difficulty with a scanning surveillance radar, however,
is that the target dwell time (the time the beam spends
directed at the target) is quite short and often insufficient
for the formation of a reliable estimate of the signature.
With dwell times measured in milliseconds and scan times
of several seconds, surveillance radars will interpret such
signatures as scan-to-scan fluctuations with little possibility
for a positive identification. Flock and Green [5] recognized
this problem and proposed a combination of surveillance
and signature analysis radar, the latter using pulse-Doppler
techniques.

Much less work has been done on the spatial distribution
and polarization properties of bird clutter. Spatial amplitude
distributions have been examimned by Barry et al. [12]; and
Dill and Major [13] actually studied the distributions of bird
flocks in three dimensions. Some references to the work on
polarization properties were provided by Vaughn [6].

Meteorological clutter has long been the subject of study
and much is known about the characteristics or rain and
storm clutter (see Nathanson and Reilly [14]; Smith et
al, [15]; Doviak and Zrnic [16]). Long-term pulse-to-pulse
correlation is much greater than it is for bird clutter [17], as
is the spatial uniformity in amplitude distribution and area
movement. In the context of this statement, “long-term”
refers to periods greater than one dwell period, which in our
case is somewhere around 25 ms [17]. Many modern radars
make use of a weather channel to derive weather contours
for presentation to the operator, and attempt to filter weather
clutter out completely from the target detection channel.
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These contours are simply derived from amplitude thresh-
olding [18]. Weather radars represent a further evolution in
the desire to learn more about meteorology, and are used
extensively as an aid in forecasting and to provide weather
reports to the aviation community. These radars derive rain
intensities from calibrated reflectivity measurements which
are then plotted in color on PPI displays.

Ground clutter is, perhaps, the most complex of all
commonly occurring clutter types. Its lack of homogeneity
makes it difficult to characterize, although many attempts
have been made to do so [19]. Even today, ground clutter
characterization cannot be considered complete [20]. Air
traffic control radars generally combat clutter through the
use of MTI and MTD techniques and ground clutter maps
[18], [21], [22].

Some attempts to classify clutter based on this knowledge
have been made, but they demonstrated only marginal
success. Perhaps one of the simplest techniques to automat-
ically detect the presence of birds is to determine the spatial
density of targets and to relate this density to the various
clutter types. Hunt [23] describes automatic equipment that
computes this density by counting targets, and relates it to
the probability of a bird strike. Unfortunately, since this
device counts all detections and not just birds, it would
likely become rather unreliable when weather clutter is
encountered.

The desire to add as little new equipment as possi-
ble to existing surveillance radars lead to several studies
into the spatial amplitude characteristics of clutter at the
Communications Research Laboratory (CRL) at McMaster
University. Haykin and Carter [24] reviewed the then
current literature and theory, and proposed a processor to
measure the distribution of amplitudes and Doppler spreads.
Their report also contains an appendix describing the work
on weather and bird clutter carried out by other Canadian
and United States agencies. Currie ef al. [25] continued this
work by testing the processor algorithms using recorded
radar data. They tested amplitude histograms, adjacent
sample variabilities, and clutter area movement (scan-to-
scan). The most promising of the three appeared to be the
adjacent sample variability measure, although the authors
state that the area movement algorithm may be of some
use. Amplitude histograms of bird and weather clutter were
found to be too similar to be of use. It appears that this work
has not been continued beyond this point, with the emphasis
shifting to the study of Doppler spectra.

C. Evolution of the Use of Spectral Parameter

The principles of Doppler radar have been known since
the 1930’s, but it did not see widespread exploitation
until the development of digital technology in the 1960’s
(Skolnik, [2]). Spectral analysis is the Fourier transformed
version of correlation analysis and thus can be carried out
on noncoherent radar data to find spatial and temporal
correlation parameters. Temporal correlation will clearly
detect the wingbeat characteristics of bird clutter and could
serve well to distinguish it from weather clutter and aircraft
targets. Due to their short dwell times, however, surveil-
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lance radars cannot effectively measure such temporal
correlation, and any “discovered” spatial correlation must
be corrected for the effects of the scanning antenna beam.

Analysis of the Doppler shift, which arises from the
motion of the target, had the promise of providing addi-
tional information for discrimination. Haykin and Carter
[24] proposed, and Currie et al. [25] tested the viability of
using the spread of the Doppler spectrum as a discriminant.
Chan and Haykin [26] compared the performance of the
Fast Fourier Transform (FFT) and the Maximum Entropy
Method (MEM) as spectral estimators of the clutter spec-
trum, given that only a few samples were available. Kesler
[27] extended this work and concluded that, for clutter
which can be modeled as an autoregressive process, the
MEM is a superior estimator than FFT-based and other
linear methods. Using recorded radar data, it was found that
significant differences appear to exist in the spectral spreads
of birds, weather, and ground clutter {27], [28]. Currie
and Haykin [29]; Haykin ef al. [30] actually constructed a
working “classifier” prototype which computed “turbulence
indexes” to warn of the dangers of the airborne hazards.
These indexes were then related to individual clutter types
for identification.

The CRL (McMaster) work did not, however, relate the
observed characteristics to any of the physical phenomena
at work in the scatterers that cause the clutter; once the
theory was developed, it proceeded largely on an empir-
ical basis. On the other hand, studies which correlated
the physical motion of clutter with their spectra used
special-purpose radars. Bird clutter analyses were mostly
done using nonscanning radars that allowed continuous
measurements for several seconds [5], [6]. From these
analyses, researchers were able to define many of the
amplitude and Doppler signatures of individual species of
birds. The amplitude modulation introduced by the scanning
beam modulation, though acknowledged, was not generally
discussed.

Weather radars supplied much of the knowledge on
weather clutter [14], [15]. These radars do not, in
general, use fan beams such as those used by air traffic
surveillance radars. Pencil beams are used to enable a
more detailed breakdown of the scanned volume. As a
consequence, resolution cells are not columns and their
smaller vertical extent increases the homogeneity of the
measured characteristics. These characteristics include, in
addition to reflectivity, Doppler, Doppler velocity profiles
and gradients with height and range, and Doppler spectral
spread to detect turbulence [16].

D. The Application of Pattern Recognition Techniques

The work discussed up to this point has dealt essentially
with finding characteristics of clutter, on the basis of which
several categories could be distinguished. No actual classi-
fication had been carried out; in fact, the term classification
was often used rather loosely where the term feature selec-
tion would have been more appropriate. Several excellent
books on pattern recognition techniques were published in
the early 1970’s [1], [31], [32]. Comprehensive summary
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papers on the state of the research at that time were written
by Ho and Agrawala [33] and Kanal [34]. Most of this
work is still valid; and more recent research results have
been compiled by Fu [35] and Jain [36].

In regard to radar, Skolnik [3] presents several techniques
for automatic classification of radar targets, which is cited
as an example of M-ary detection. Two candidates are
given as examples: filtering (a matched filter and detec-
tor per class) and cross-correlation (similar to template
matching). The difference between these two classifiers
is in fact only one of practicality; fundamentally, they
are substantially the same and belong to the category of
linear machines (see Duda and Hart [1]). Barry et al
(12} used such a linear machine in an attempt to separate
“angels” from aircraft targets. They applied as many as four
hyperplanes to feature vectors consisting of 20 successive
amplitude samples, amplitude distribution statistics and
correlation measures. They claimed success rates of up to
95% angel rejection.

Most work reported in the literature on statistical pattern
recognition takes a more direct approach based on Bayes
decision theory. As a result, the decision rules tend to be
much more complex than those described in [3], but also
much more effective. While this work is now considered
relatively mature [36], it has not been applied broadly to
radar signal analysis. Nonradar applications appear to have
received considerably more attention. Electrocardiogram
(ECG) waveforms have frequently been used as examples
of time series classification [32], and “optimal” rules have
been devised for speaker waveform recognition [37]. Chen
[38] used the nearest neighbor algorithm to classify seis-
mic waveforms based on parameters derived directly from
maximum-entropy spectra.

Work with radar clutter is much more recent. Agnel
[39], [40] tested the effectiveness of the parametric Bayes
classifier on three classes of recorded noncoherent ground
clutter data (plowed fields, trees without leaves, and snow-
covered ground), and achieved up to 90% correct classi-
fication. He also compared the performances of the so-
called minimum intraclass distance (MICD) and nearest
neighbor classifiers, but concluded that they were not
satisfactory. Several feature-vectors were used, but most
of them were derived from autoregressive analysis; that
is, they ostensively measured the spatial correlation of the
clutter. Stehwien [41], [42], and Stehwien and Haykin [43],
[44], appear to have been the first to apply the Bayes
classifier to parameters arising out of the estimation of the
Doppler spectrum.

A final mention is in order, for the sake of completeness,
of the application of syntactic pattern recognition tech-
niques to the analysis of radar clutter. These techniques
approach the problem from the perspective of image or
scene analysis and attempt to describe the spatial properties
of the clutter along with scan-to-scan changes in shape
and position. Algorithm inputs are usually in the form of
processed and scan-converted data. As such, syntactic tech-
niques are ideal companions to follow statistical classifiers.
Duda and Blackmer [46] applied such techniques to weather
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radar data to trace echo contours and track weather systems.
Blackmer et al. {47] extended the work and used the echo
descriptions to forecast weather system movements.

III. THE RADAR AS A SENSOR

A surveillance radar consists of a high power pulse
transmitter, a rotating antenna, and a receiver (Skolnik 31
[48]). The antenna focuses the pulse energy into a beam
of some finite width, and scans the surrounding volume of
space with it. Any reflector within this volume will return
some energy back to the antenna. The number of pulse
echoes received by the radar is a function of the beamwidth,
the PRF, and the rate of antenna rotation, given by

Ny = fula = fu- M
wd
where Nj is the number of pulses, f, is the PRF in Hz,
ty is the dwell time on the target in seconds, 6 is the
antenna beamwidth in radians, and w, is the antenna ro-
tational velocity in radians/second. If the receiver operates
coherently with the transmitter, then both amplitude and
phase of the echo pulses can be measured. The phase is
related to the distance, hence a change of phase from pulse
to pulse (Doppler frequency shift) implies a radial velocity.
The phase ¢, measured at a distance z from the transmitting
radar t seconds after transmission, is

o(x,t) = ¢(0,0) + wet — wcg ?2)

where ¢(0,0) is the starting phase of the pulse, w, is the
transmitter carrier frequency, and c is the speed of light.
The pulse frequency of a moving receiver is thus the rate
of change of the phase

dy 1 dx

A T w
which can be split into the original carrier frequency and
the Doppler shift wy:

= we + wyg 3)

1 dx 2v
= —We— — = —W, —. 4
wd wcdt v c )

This shift arises from the relative motion of the receiver or,
in the case of a monostatic radar, the change in the round-
trip distance 2x due the velocity of the target v. Equation
(4) can be written in terms of the wavelength A and the
Doppler frequency expressed in Hertz:
2v 2v
fa=-1. 2= -2 ©®)
The carrier frequency will have been removed in a coherent
receiver, reducing (3) to d¢/dt = w,. A pulsed Doppler
radar is inherently a sampled system and therefore
Agp

rfa=wa= = flp = fid (6)

where ¢ = Ay is the relative Doppler frequency. Com-
bining (5) and (6) then provides the relationship between
target velocity and the pulse-to-pulse phase change

'U:_fs_¥ (7)
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where the velocity v is expressed with the same distance
units as the wavelength A. Clearly, the largest unam-
biguously measurable Doppler frequency is the Nyquist
frequency of + f; /2. Larger frequencies will be folded back
in the spectrum onto lower requencies about the Nyquist
rate (aliasing). To resolve the sign of ¢, both in-phase and
quadrature demodulation is necessary, resulting in complex-
valued video data.

The coherent video signal is sampled at fixed intervals,
whose length depends on the range resolution. To ensure
a low probability of missing targets, the video signal is
typically oversampled; that is, the sampling interval is
smaller than the width of the transmitted pulse often less
than half. The entire sampled data set then consists of a
number of time series, one per range cell. The limited
dwell time on any one target limits the number of samples
that can be regarded as having originated from the same
target to Ng. Because of the oversampling, adjacent range
samples will usually contain returns from the same target.
The number of adjacent time series that may be used to
extract information from any one target will depend on the
length of the sampling interval relative to the pulse width.

IV. TARGETS, CLUTTER, AND THEIR SPECTRA

Radar echoes arise from any reflecting surface or ob-
ject within the line of sight of the radar. These objects
include, besides aircraft, a variety of more broadly dis-
tributed features such as mountains, hillsides, trees and
other vegetation, buildings, rain clouds, birds, and even
insects. Only a few of these objects are truly static; even
ground-based structures such as trees and towers sway and
change their position continuously, albeit very slightly. This
change in position leads to both the observed scintillation
in net reflectivity and the measured relative velocity. The
nature of these changes provides a clue to the type of target
or clutter observed.

The discussions in this section are illustrated with MEM
spectra of the respective clutter types. These spectra of
model order 9 were computed using the multisegment
Burg formula and the procedure outlined below in Section
VI. To allow comparisons, similar signal strengths (30 dB
signal-to-noise ratio (SNR)) were selected except where not
available (rain clutter at 20 dB). Mean Doppler shifts were
also removed.

A. Target and Clutter Types

1) Targets and moving vehicles: The irregular shape of
aircraft (from the radar’s point of view) can cause signif-
icant variation in RCS depending on the angle, or aspect,
from which the aircraft is seen by the radar (Nathanson
[49]; Skolnik [3]). Any maneuvering or vibrations will
change the aspect, and thus the observed RCS. Turbulence
in the air will modify the flight path and consequently
modulate the velocity, particularly of light aircraft. Another
and potentially more significant source of velocity and
amplitude modulation are rotating propellers and jet engine
compressor blades [3]. In general, however, the body of
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Fig. 2. Maximum entropy spectra of aircraft targets.

the aircraft is expected to be the dominant reflector in all
but the nose and tail aspects. Any propeller or compressor
blade modulation is thus likely to be found at low levels,
especially for large jet aircraft which dominate today’s
air traffic environment. Figure 2 presents sample aircraft
spectra, displaying some of these characteristics.

Ground-based moving vehicles are often mistaken by
radar operators as light aircraft following a highway due to
their similar speeds. However, there are a few significant
differences between their radar returns. The RCS of cars
is likely to be small compared to aircraft whose wings
present a large reflecting surface. Trucks are therefore the
most likely ground-based vehicles to be observed on a radar
screen, with modulation present due to tire motion and
vibration. Other vehicles such as tractors and construction
machinery are usually very slow-moving and are unlikely to
be mistaken for aircraft by radar operators. The absence of
wings and the reduced maneuverability may result in lower
RCS fluctuations. Neither cars nor trucks have propellers;
thus less velocity modulation is expected. The proximity
to the ground does, however, imply that if the vehicle is
visible to the radar, so will be other nearby ground-based
objects and, perhaps, the ground itself. This will introduce
an additional spectral line at zero frequency. The spectra
shown in Fig. 3 have been normalized to move the primary
peak to zero frequency; hence, the ground clutter peak
is elsewhere.

2) Ground clutter: This type of clutter consists of returns
from mountains, hillsides, buildings, towers, power lines,
and vegetation such as trees, bushes, and cultivated fields
(particularly when wet). Building reflections are particularly
annoying to radar operators since it tends to be the strongest
of all clutter types and dominates in radars located near
large cities. By its very nature, ground clutter is fixed in
position and does not exhibit any overall velocity relative to
the radar. Some internal motion is usually present, however,
except in the case of low and massive buildings. Trees,
transmitter towers, and tall buildings all tend to sway by
varying amounts, depending on wind conditions. Higher
frequency vibrations, depending on strength, may also be
visible to the radar.
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Fig. 3. Maximum entropy spectra of car and truck targets.

Distributed features such as forests and cultivated fields
consist of many individual “targets” or scatterers within
any one radar resolution cell, and the effects of the relative
motion of each sum coherently. This summation can either
enhance or reduce the net return strength and thus the
apparent reflectivity. Scintillation or amplitude modulation
results from the constantly changing positions of the indi-
vidual scatterers relative to each other.

The character of the clutter does change somewhat with
range as the resolution cell of the radar widens and more
scatterers are included within it. Long-range returns are also
subject to changes in the refractive index of the atmosphere.
Atmospheric inversions can lead to ducting phenomena that
make ground clutter visible well beyond the line of sight
horizon. Ranges to 80 nmi are not uncommon. The total
return path is a function of the refractive index. At L-band
(wavelength A = 23 cm) a one-way path length change of 6
cm (0.4 parts per million at 80 nmi) will cause a 180° phase
shift of the echo return. Rapid fluctuations in the refractive
index will thus modulate the phase of the echo, resulting
in apparent nonzero instantaneous velocities. Nevertheless,
the intrinsic spectrum of ground clutter is expected to be
very narrow, much narrower than the effects caused by the
antenna scanning modulation. An example of ground clutter
spectra is shown in Fig. 4. More details on ground clutter
may be found in (Long [19]; Skolnik [3]).

3) Rain and storm systems: Water is a good reflector of
radar energy, which makes clouds (consisting of suspended
water droplets or ice crystals) a common source of clutter.
Clouds, unlike ground clutter, can show a significant veloc-
ity component relative to the radar depending, of course,
on wind speed and direction. While all water droplets
within the cloud move in generally the same direction, there
are several mechanisms that cause some internal motion
as well. First, wind and gravity effects on the individual
velocities of the droplets will vary with their size. The larger
droplets will be more resistant to changes in wind velocity
and also tend to fall toward the ground faster in the absence
of any updrafts. Considerable downward motion of this type
will itself cause downdrafts, as well as updrafts to replace
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Fig. 4. Maximum entropy spectra of ground clutter.

the downward moving air. Thunderstorms are examples of
cloud systems with particularly violent turbulence of this
type. The second mechanism for internal motion is mechan-
ical turbulence, present in low-altitude clouds and caused by
the uneven drag of the earth’s surface and obstacles such as
mountains and buildings. This turbulence, while not gener-
ally as severe as that found in thunderstorms, can still result
in significant variations in droplet velocities relative to
each other. The third mechanism is windshear, or radically
different wind speeds and directions at different altitudes.

Turbulence, or the (on a macro level) random internal
motion of the water droplets will modulate the measured
velocity of the cloud system somewhat. Obviously, the
greater the turbulence, the greater will be the modulation.
Scintillation is not usually a consequence due to the very
large number of individual scatterers, although it may be
observed in windshear conditions when the overlaying of
two or more clutter areas, each with its own distinctive
overall velocities, will result in a type of spatial interference
pattern.

Yet another mechanism that affects the clutter spectrum is
beam broadening. The width of the beam, both in elevation
and azimuth, is such that particles traveling through the
beam with a constant velocity will exhibit different Doppler
frequencies at different points in the beam. This is a
direct consequence of the changing geometry and leads to
a minimum spectral width even if no internal motion is
present. This applies to both vertical (gravity-induced) and
horizontal (wind-induced) motion.

Examples of rain clutter spectra are shown in Figs. 5
and 6. While the main spectral peaks are similar in both
cases, the presence of a windshear component is visible in
Fig. 6. The data for these spectra have been taken from
different areas at different distances from the radar, but
within the same time period. More information on rain and
weather clutter may be found in the comprehensive reviews
published by Nathanson and Reilly [14], Smith et al. [15],
and Zrnic and Doviak [16].

4) Birds and bird flocks: Birds have long perplexed radar
operators who refer to their echoes as “angels” (Eastwood
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Fig. 6. Maximum entropy spectra of rain clutter with a windshear
component.

[4]). It is very difficult to correlate bird echoes with visual
observations (see Appendix B), and aside from the often
large numbers of echoes present, each individual echo re-
sembles that of a small aircraft both in strength and velocity.
It is now known that echoes of single birds are usually too
small to be seen on long-range surveillance radars, and it
is whole bird flocks which, depending on the number of
birds present within a resolution cell, make up single strong
echoes. Unlike water droplets, which passively move with
the wind, birds are individually powered scatterers who do
not move in exactly the same direction and at the same
speed. Birds are continuously shifting their position within
the flock, even those that fly in a particular formation. This
causes large fluctuations in net echo strength as individual
echoes sum constructively at one moment and destructively
at the next moment. Clearly the variation in net velocities,
and consequently the spectrum, will be quite large for the
same reason.

Bird echoes are well known to exhibit wingbeat mod-
ulation, that is a variation in RCS as a function of the
wing motion [5], [11]. This wing motion also causes
instantaneous changes in the relative velocity as the bird
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Fig. 7. Maximum entropy spectra of bird clutter.

moves up and down. It is unlikely that the wings themselves
contribute much to the echo itself; their mass is quite small
and the feathers do not reflect radar energy very well. Both
wingbeat and velocity modulation will vary considerably
with the species. In general, bird echoes exhibit the largest
variation in the spectrum of all clutter types. This is
dramatically demonstrated with the spectra shown in Fig. 7.
An excellent and more complete summary of the current
knowledge on birds as radar targets has recently been
published by Vaughn [6].

B. Spectral Spread and Shape

Changes in RCS, such as wingbeat modulation in bird
echoes, modulate the entire pulse echo in amplitude. This
will further contribute sidebands to the spectrum. Their
strength is proportional to the range of the RCS fluctu-
ations, and their spread is a function of the frequency
of the changes. Figure 8 illustrates the effects of both
amplitude and frequency modulation on the MEM spectra
of a complex sinusoid in noise. The modulating signal was
a single 20 Hz sinusoid, adjusted such that it would result
in a modulation index of 50% for the AM case, and a
peak deviation of 20 Hz for the FM case. Both were also
used simultaneously for the spectrum labeled AM and FM.
It is interesting to note that frequency modulation appears
to dominate and widen the spectrum much more than the
particular level of amplitude modulation chosen. A 20-Hz
frequency deviation corresponds to approximately 4.5 kn
and is not an unreasonable level of internal motion. A 20-
Hz modulation is typical and representative of the wingbeat
for bird echoes [6] and the Doppler spectrum deviations for
rain clutter [14].

The presence of more than one scatterer within a res-
olution cell leads to more complex and variable spectra.
This can occur quite frequently in surveillance radars since
their fan beam is designed to detect targets at various
heights. The resolution cell is thus a column extending
from near the ground to altitudes of over 50 000 feet.
Each target or group of targets has its own average velocity
and internal motion, and thus leads to individual spectral
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peaks. Superposition of these spectra leads to variable,
and often unpredictable composite spectra. Destructive as
well as constructive superposition will distort the spec-
trum significantly, and expected adjacent spectral peaks
will either disappear or merge into one. Little can be
done about this with target-like clutter such as birds.
Rain, on the other hand, has a larger spatial extent and it
may well be possible to take in sufficient data to derive
accurate spectra. Still, the effects of beam broadening
will always be present, especially in distributed clutter
and for time series extending over large scan angles.
Pure line spectra are thus never expected, even in calm
weather conditions. As turbulence increases, however, the
spectral spread will increase further and two (or more)
distinct peaks may then become discernible in windshear
conditions.

C. Effects of the Antenna Scanning Motion

The presence of unique characteristics within the Doppler
spectrum of the radar returns is a necessary, but not a
sufficient condition for classification to be possible. These
characteristics must also be present in the spectral estimate,
or at least the feature set arising from the estimate. Un-
fortunately, a number of measurement limitations severely
restrict their visibility. The first limitation is quite simply
the small number of samples per target, N, as the beam
scans past it. This will lead to a relatively large variance
in the spectral estimate and, conversely, any feature set
arising from it. The increase in variance with low values of
N has the effect of obscuring small details and effectively
reducing the resolution capabilities of spectral estimators.
This again suggests that as much data as possible should
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be included in the estimate, particularly if the true variance
is already known to be large.

Another limitation is the shape of the antenna beam
itself. As the beam scans past the target, the echo pulses
will be modulated accordingly. This amplitude modulation,
usually approximating a Gaussian or sin (x)/z pulse shape
[50], will convolve with the basic spectrum, introduce addi-
tional spreading, and further reduce the maximum available
resolution. For distributed clutter this may not appear
to be a problem since new scatterers are continuously
entering the beam, but these new scatterers are moving
independently which, in most cases, can lead to significantly
different spectra. These will superimpose and also spread
the resulting spectrum; hence, the resolution of individual
clutter spectra is not necessarily any better.

The third limitation is the introduction of an apparent
Doppler shift due to the size and orientation of reflecting
objects. A building that presents a reflecting surface wider
than the beamwidth, but with a nontangential orientation,
will result in successive returns of similar magnitude but
continuously changing phase as the center of the beam scans
past it. This will result in a fairly sharp spectral peak at a
nonzero frequency, quite unlike that of a nonmoving point
target with its Gaussian spectrum.

V. DATA PREPARATION

In order to carry out the experimental studies on the
classification of radar clutter reported in this paper, ap-
proximately 260 min (20 gigasamples) of radar data were
collected from two operational L-band ATC radars. Some
understanding of the radar is clearly essential to prepare the
data for classification. Preparation itself includes selection

HAYKIN: RADAR CLUTTER IN AIR TRAFFIC CONTROL ENVIRONMENT



from the indexed tape library, correction of tape errors, and
compensation for alignment errors in the radar demodulator.
Once such preprocessing is complete, feature extraction
(described in Section VI) can take place.

A. The Radar System

The choice of radar to use for this research was based
on several requirements, and it had to be representative
of the new generation of ATC radars being installed. A
coherent digital MTI or MTD radar was preferred to allow
high integrity data capture and recording. Difficulties with
maintaining coherence using a two-channel analog video
recorder made digital recording an absolute requirement.
The choice of operating frequency of the radar was less
important, and past analyses have been made with both L-
and S-band radars [27].

The site of the radar was perhaps the most important
consideration. Since one of the main motivations for the
original research was bird clutter identification, the radar
had to be situated below major bird-migration flyways.
In cooperation with the Canadian Department of National
Defence (DND), Ottawa, the Moose Jaw (Saskatchewan)
TRACS-ASR was made available for the research during
the migration season in the spring of 1985. CFB Moose
Jaw is Canada’s jet training base and is plagued by heavy
bird migration both during the spring and the fall. For
safety reasons, the policy of the base is to shut down night
flying during the migration season. Since little itinerant
traffic passes through Moose Jaw, the radar was normally
not required for traffic control during hours of darkness.
It could therefore be relatively freely configured to the
research parameters, which made it an ideal choice. An
identical radar at CFB Trenton (Ontario) was also made
available during the fall of 1984 for early trials and testing
and debugging of the recording equipment. This radar was,
however, dedicated to air traffic control on a 24-hour basis
and its parameters (PRF, beam gating, and STC) could not
be adjusted as freely.

The TRACS-ASR is a derivative of the Westinghouse
ARSR-3 long-range air route surveillance radar. It was
specially modified to meet Canadian DND requirements
for a terminal radar as part of their ATC modernization
program. The two-channel radar transmits an uncompressed
2-us pulse with a peak power of 1.5 MW at a repetition
frequency of about 650 Hz. Both channels can operate
simultaneously, each on a different frequency and po-
larization. This enhances the detection capability of the
radar by providing frequency and polarization diversity.
Unfortunately, only one channel was operative at the time
of recording and use could not be made of this feature.
The use of polarization as a discriminant thus remains
untried, but should not be overlooked in future classifier
designs. It was fortuitous, however, that the operating
channel in Moose Jaw was horizontally polarized, since bird
reflectivity for this polarization has been reported to be as
much as 4 dB greater than that for vertical polarization [6].

The radar uses a dual-feed antenna (high beam is receive
only), which forms a fan shaped beam with a modi-
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fied cosecant-squared elevation pattern and a narrow 1.5°
azimuth beam width. The scan rate of 12 rpm results
in approximately 14 hits per beamwidth which, when
processed coherently, can provide up to 10 dB of integration
gain above a single hit detection. The TRACS signal
processor is fully digital, and features MTI for both I
and @ channels, log-CFAR, noncoherent pulse-to-pulse
integration, and adaptive threshold detection to maintain
control over the dynamic range. Staggered PRF’s are used
to kill MTI blind speeds and tear up second-time-around
echoes. Detected targets are correlated with SSR transpon-
der returns and sent to the main computer system for target
tracking, display, and logging. The radar operator sees a
fully synthesized display complete with target identification
and track history, as well as weather contours. Wide-band
log video is also available as an overlay and is usually
fed from the weather channel. More detail on the radars is
provided in Appendix A.

In Section III it was seen that the data of interest are
the coherently demodulated in-phase (I) and quadrature
(Q) channels. Both are available from the analog-to-digital
converters to a precision of 9 bits plus sign. The digital data
are linear in amplitude and the 9-bit mantissa thus results
in a 46-dB dynamic range. Conventional spectral analysis
requires not only linear data, but also fixed intervals be-
tween samples. The radar has four choices of fixed PRF’s,
and two of these were used.

The coherent demodulation process in the radar receivers
is subject to alignment errors, as is the analog-to-digital
conversion. Unequal gains in each of the channels and the
lack of true orthogonality must be compensated for if the
errors are sufficiently large. Given a signal with ampli-
tude S and phase ¢, the correci in-phase and quadrature

components are defined as
I = Scosg, Q = Ssing. 8)

The corrections that must be applied to the measured values
I’ and Q' are thus

I=kI and Q=k(Q +ksl) 9
where
1 1
= — = — = si . 1
ki I Rl k3 =siné (10)

The quantities k. and 6 are the gain ratio between the
I and Q channels and the quadrature error (deviation
from orthogonality), respectively. A complete discussion
on these errors and how to find the required correction
factors is given in Stehwien [41]. Before this correction can
be applied, any offset due to A/D misadjustment must be
removed. I’ and @)’ are known to be zero-mean parameters
and the sample mean of thermal noise data is thus a good
(low variance) estimate of this offset. Thermal noise, which
has the lowest variance of any radar signal and is white
relative to the PRF, can be found in abundance in the region
beyond 80 nmi where the radar is still receiving, but where
few targets and even less clutter would be found. From
this region the thermal noise powers W; and Wg can also
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be estimated. They are required for both the procedure to
find the above correction factors and the computation of the
SNR-based feature as discussed later.

A final preprocessing consideration is the integrity of the
data on tape. All data were stored on 1" high-density tape
using an Ampex AHBR-1728 (airborne high bit-rate, 28
track) 24-channel digital recording system. High recording
rates (up to 4 Mbits/s for each channel) are achieved using
an analog recording scheme with proprietary encoding to
limit bit errors. Bit densities used were 26.67 and 23.33
kbits/in, and all 24 bits (10 each for I and Q, 4 for control)
were written twice to detect the presence of errors. Isolated
bit and burst errors were in fact encountered, and some
error correction was necessary before processing the data.
Simulated PPI displays reveal such errors quite readily and,
since they tended to be confined to a single track on the
tape, some form of interactively directed median filtering
was able to find and correct them. Small errors, which are
within the dynamic range of the local data itself, can safely
be ignored on the assumption that their effects are negligible
when compared to the large volumes of correct data.

B. Data Library

The complete library consists of 15 indexed tapes, each
containing 15 to 18 min (approximately 200 scans) of
continuous radar data. Each scan is numbered and retriev-
able singly or as a sequence of consecutive scans. Notes
made while recording refer to the tape in general and
the scan number in particular. As a result, individually
identified targets and clutter areas can be found quickly
and recovered. Supporting data include the time and date
of the recordings, the relevant radar parameters, locations
of clutter and aircraft targets, video tapes of the PPI
display, time exposure photographs, a daily record of the
meteorological conditions including surface and upper wind
forecasts and hourly weather reports, and bird migration
predictions. In some cases comparisons were made with
bird migration predictions and findings from CFB Cold
Lake, which is situated 300 nmi north-west of Moose Jaw,
and under the same general migration path.

Bird clutter, regardless of any expectations of heavy
migration, proved to be the most elusive of all the clutter
types, or perhaps only appeared so at first. However, since
it was impossible to positively identify bird and bird-flock
echoes, recordings were made whenever bird clutter was
suspected or whenever unusual clutter was observed. Later
analysis showed that most of the suspected clutter was
indeed caused by birds (see Appendix B); and consequently
10 of the 12 tapes recorded in Moose Jaw contain at least
some bird clutter. Seven of these are considered “bird
tapes,” with bird clutter as a main component of the radar
data. Two contain “heavy” bird clutter with the number of
completed video counts (MTI-detected targets within one
scan) exceeding 700. Weather clutter is present on 8 tapes,
and three of these were specifically recorded to capture
periods of heavy precipitation, including thunderstorms.

Not surprisingly, some aircraft targets are present on
virtually every tape, but only two were recorded during
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peak flying hours. One recording made at Trenton during a
late afternoon peak air traffic period captured many aircraft
traveling the Ottawa-Toronto-Montreal routes and some
within New York State. Compared to clutter, however,
aircraft targets are very sparse and therefore cannot be
characterized with the same reliability and confidence. The
same is generally true for ground-based vehicular traffic,
including cars and trucks. Most of this type of clutter was
found on one tape recorded in Moose Jaw when a slight
atmospheric inversion made a significant stretch (more than
20 miles) of the Trans-Canada Highway visible to the radar.
While expressway traffic near Trenton also appeared on
time exposure photographs, it was much more spotty due to
the hilly terrain and locating a sufficient number of vehicle
echoes was not possible.

Ground clutter is obviously present on all tapes; however,
the atmospheric inversions experienced quite frequently and
regularly in the Province of Saskatchewan, Canada, can
increase the maximum range of the extent of ground clutter
to over 80 nmi. This proved to be a significant problem for
the radar, since the available STC curves were not designed
for these ranges and the sometimes extremely powerful
clutter returns. Occasional MTI breakthroughs were noted,
although it was not clear whether these were caused by
dynamic range overload, vehicular traffic, or some other
inversion related phenomenon. Two tapes were recorded
during such conditions.

One Moose Jaw tape was recorded during the daytime,
at the end of a regularly scheduled radar preventive main-
tenance period.This tape contains several radar parameter
variations and injected reference targets. It also contains jet
training activity and localized bird clutter. More detail on
the recorded data and the data library may be found in [43].

VI. FEATURE SELECTION AND EXTRACTION

Before classification can proceed, the radar measurements
must be transformed into a set of features in order to en-
hance class differences that contribute to their separability.
This is not an easy task, especially if the measurements
are contaminated with dominant information which is not
unique to any one class.

Most feature selection and extraction techniques proceed
on a rather ad hoc basis. While several authors claim “opti-
mality,” their procedures are, in fact, based on assumptions
that apply only to a specific group of problems [37]. These
procedures may be optimal if the assumptions made are
correct, but when they are suspect one necessarily returns
to ad hoc rules.

What, then, are the most likely features of radar clutter
that may lead to successful classification? As pointed out in
Section III, given that classification is to be accomplished
on a single-scan basis, the most important features relate
to the shape and variability of the Doppler spectrum as
it reflects the internal motion of the clutter. Spatial distri-
bution and the relative size of the scatterers can best be
identified on a scan-to-scan basis using image processing
and syntactic recognition techniques, although aspects of
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the relative distribution within one resolution cell can be
estimated and included as a feature. No other features are
assumed to be available.

The overall Doppler frequency itself is not unique to
any one clutter type and depends much on the relative
direction of travel of the clutter with respect to the radar.
In addition, aliasing due to sampling at the PRF will
effectively generate uniform probability densities for the
aliased center frequencies of most moving clutter types.

Signal strength can clearly only be a feature if the
radar is calibrated, which is generally not the case for
surveillance radars. Many factors affect the strength of
the echo, including target position within the beam pattern
and multipath propagation. Realistically, neither of these
effects can be quantified since they are markedly affected
by anomalous propagation. Target glint and the distribution
of clutter scatterers within one resolution cell can be con-
sidered random variables and are the source of significant
scintillation.

A. Selection of Separable Features

Previous work (Stehwien [45]) established the utility
of Burg’s reflection coefficients, arising from the MEM
of spectral analysis (Burg [51]), for the extraction of
spectral features. The coefficients arise out of the lattice
implementation of the prediction error frequency (PEF),
which attempts to minimize the prediction error power
at each stage. This minimization results in a whitening
filter, and as such the reflection coefficients represent the
incremental “predictable” information extracted from the
time series at each stage. In his original work, Burg dealt
only with real-valued coefficients derived from real valued
data; the complex form of the algorithm is given by [52]

(m—1 m—1
Z f )bn( 1 )

9 n=m++1
(m— 1)
n—

Pm = —2 N
z { fnm—l)‘
n=m-+1
where ffqm) and 5™ are, respectively, the forward and
backward prediction errors of the prediction error filter
of order m. They are computed using the lattice filter,
described by the following pair of equations:

an
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The first stage of the lattice uses the data values themselves
as input

J0 =6 =z, (14)

The magnitude of the reflection coefficient p,, depends
on the incoming signal strength, which suggests that the
average signal power itself should be measured. Such a
measurement also helps to bring the comparisons onto an
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equal basis. The average signal power is simply (assuming
ergodicity in the mean)

N
Py=E[z,x}] ~ Z (15)

where E is the expectation operator, and N is the total
number of data samples.

The signal power P, is an average value computed over
the entire measurement window. The size of this window is
limited by the length of time the beam of the radar spends
on any one scatterer. In a scanning radar this time is deter-
mined by the antenna rotation rate, the PRF, and the antenna
beamwidth. The echoes from the scatterer are amplitude-
modulated by the azimuth beamshape itself, which can
usually be approximated by a Gaussian function. Single
scatterers such as aircraft targets will thus generate, to a first
approximation, Gaussian amplitude-modulated complex si-
nusoids. Echoes from multiple, widely distributed scatterers
will not exhibit such modulation as the density of scatterers
which the radar sees, will remain relatively constant. This
distinction may not become apparent in spectral analysis
and a measure of amplitude distribution should thus be
explicitly computed. The normalized variance of the in-
dividual sample amplitudes s =| z | is such a measure, as
shown by

Py—3° 32
= =1-— 16
E(s)2 Py Py (16)

where 5 is the mean value of s. A feature to aid the
separation of distributed clutter from point targets is thus
introduced. Unfortunately, this feature does not yield com-
plete information regarding the nature of the signal variabil-
ity within the observation window. Comparing the power
levels in the center of the window (Py) with those outside
the center (Pg) will yield a feature that can distinguish
between convex and concave signal shapes:
Py = PR = [ ]
0 E 10
where NPy = Ny Pr+ NgPg and N = N;+ Ng, the total
number of samples in each computation. The ratio N/Ng
is simply a constant and can be ignored when the number of
samples is fixed. A computationally simpler feature is thus

()

Pr
— -1 18
A ()

FPyig =
This completes the separable feature set that may be ex-
tracted from the radar data.

B. Dimensionality

One question that remains to be answered regarding
the feature set is: how many of the reflection coefficients
pm are required to achieve sufficient separability between
classes to make classification practical? The obvious answer
might be as many as possible within the computational
constraints provided by technology. While it is generally
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true that including additional independent features will
increase separability, there is a very real problem with
adding many features arbitrarily, even if there are no com-
putational constraints. This problem has been recognized
in the literature (Hughes [53]; Duda and Hart [1]), and can
generally be attributed to a lack of sufficient data for the
estimation of the class prototypes.

Increasing the number of features frequently increases the
intrinsic dimensionality, or complexity of the data. The no-
tion that this increase leads automatically to a refinement of
the available information is cautioned against by van Camp-
enhout [54] who shows that, unless the statistical models
are comparable, predicting a decrease in the Bayes risk with
increasing complexity is not justified. Such an increase in
complexity is expected to occur when adding higher-order
reflection coefficients, but it is not clear whether this new
information is a help or a hindrance. The following heuristic
argument should provide insight into the problem.

The transformation from the radar measurements (in the
form of time series) to the reflection coefficients is highly
nonlinear and concentrates the dominant information in the
low-order coefficients. While this is a highly desirable prop-
erty from the point of view of reducing the dimensionality,
it also displays nonlinear behavior toward measurement er-
rors and interfering noise. In general, high-order coefficients
contain not only less information but they are estimated
using fewer data samples. Hence, their variance is greater
and their individual separability is therefore quite low. They
are also based on the residuals of the earlier stages, and
therefore tend to be more susceptible to measurement noise
and quadrature errors (Stehwien [42]). Depending on the
relative strength of these errors, residual and helpful infor-
mation may be completely obscured to the point of reducing
classifier performance. At which filter order this problem
becomes significant will undoubtedly depend on the data
set itself, the number of samples used in the coefficient
calculation, and the size of the measurement errors.

Another consideration in the choice of the number of
coefficients to use is problem specific, that is, the number
of classes to be defined. The clutter processes represent a
continuum in the feature space, and the class boundaries
are not likely to be described with great accuracy. The
definition of a few large and coarsely defined classes will
most certainly require only a few features for acceptable
classification, whereas the successful identification of many
refined classes might well require more. Clearly, a large
dimensionality allows more regions of “equal” size to be
defined, which may be necessary if the feature set for
any one class is not a hyperellipsoidal cluster (using the
multivariate normal assumption), but rather some complex
shape stringing its way through the feature space. In such
a case a contiguous set of small hyperellipsoidal regions
can be defined along the irregular cluster, with each region
belonging to the same class.

C. Multisegment Burg Algorithm for Computing
the Reflection Coefficients

The importance of low variance in selecting the number

754

of measurement samples is well recognized. If the number
of samples, N, is restricted to Ny, the number of hits per
beamwidth (which is less than 15 for the TRACS radar),
then only a second-order lattice predictor may be used if a
low error rate is to be maintained. Similarly, about N = 100
samples would be needed for a fifth-order lattice predictor.
For even longer lattice predictors, the required number of
samples N increases rather dramatically (Stehwien [42]).

However, the danger in increasing N arbitrarily is the
inclusion of clutter from outside the resolution cell of
interest. While this may be useful in cases of widespread
and homogeneous clutter, composite spectra would result in
all other cases. This must clearly be avoided for successful
classification. A reasonable scenario is to take samples in
both range and azimuth out to some level of attenuation as
determined by the receiver bandwidth and the azimuthal
beamwidth of the antenna. Within the 3-dB (one-way)
width, the radar resolution cell includes up to 15 samples
in azimuth and 3 in range for a total of 45. Not all of these
can be considered independent, however, and it may be
appropriate to expand the extent in azimuth somewhat.

Including several “parallel” time series raises the question
of how to combine them to form a single coefficient
estimate. Haykin et al. [28] propose the use of the multi-
segment Burg formula—first described by Moorcroft [55],
who applied it to UHF radar data to obtain radio-auroral
spectra—for the analysis of radar clutter. This formula
accomplishes the stage-by-stage minimization of the av-
erage prediction error power of all lattice filters using
the same reflection coefficient. Averaging the error powers
is equivalent to separately averaging the numerator and
denominator of the Burg formula given by (11). We may
thus modify this formula by writing

m—1);%(m—1
_22 Z fv(Lk )bn(lk)

_ =1 n=m+1
T K N
1 m—1
i T A vl
k=1 n=m+1
where f('")n'k and (™), , are, respectively, the forward
and backward prediction errors from the m™ stage of the
k™ lattice PEF:

19)

Pm

AR AN S (20)
by = b+ o f Y. @1

Note the common use of the same reflection coefficient.
Each of the K lattice filters is initialized with data values
from the k™ time series

0 0
£ =0 =z 22

n.

The value of K thus might be set to 3 to include the
three parallel time series, one per range sample cell. An
alternate solution is to include 3 x 15 = 45 time series,
each centered around one sample within the 3-dB resolution
cell. The series are then clearly overlapping in azimuth and
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thus a form of data weighting is introduced. The length of
the series determines the form of weighting employed and
the number of samples accessed outside the resolution cell
of interest. A length of 15 leads to an initial triangular
weighting with the emphasis linearly decreasing from a
maximum at the center of the resolution cell to a minimum
at the 10-dB (one-way) point, using a total of 29 samples in
azimuth. The benefits of such data weighting are a reduced
impact of scatterers from adjacent cells, while maintaining a
relatively large sample count. Another benefit is the ability
to pretest the individual time series based on their respective
p1 and to prevent their inclusion in (19) if it is clear that
they belong to a different cell.

A similar form of data weighting is applied to the
computation of Fy in (15); specifically, we may write

N N
Py= ﬁ SN wnarhe (23)

k=1n=1

This prevents the power from being unduly reduced by edge
and beamshape effects. In fact, it can be shown that, in
the case of a Gaussian amplitude shape for both range
and azimuth similar to that found in the TRACS radar
data, Py is 4.6 dB below what would be expected if the
peak amplitude were extended uniformly over all samples.
This is less of a reduction than would be experienced with
uniform weighting of the same number of samples (6.3 dB).

This form of the multisegment Burg formula is used
throughout the research reported in this paper. The effective
number of independent samples used was experimentally
determined (by application to pure thermal noise data) to
be approximately 61. This number is reasonable since it is
greater than 45 that should arise from the use of only those
samples inside the resolution cell, and less than 87 that
would result from weighting all 3 x 29 samples equally. A
fourth-order filter may thus be used with a clear conscience.

Once computed, the reflection coefficients must be nor-
malized to the center frequency by a rotation according
to

P = Pmexp(—jmep) (4
where
$ = arg(—p1). (25)

Rotating p; by its own argument simply leaves its magni-
tude. The magnitude r =| rho; | is related to ng, the SNR,
as follows

no
r=lol= 17 ~” (26)
This leads to the normality transformation
up = 10log(ng) = 1010g<1;>. 27)
—r

The need for a similar transformation also applies to
the signal strength feature Py, conveniently expressed in
decibels relative to the thermal noise power W as follows

Uy = 10log(Py/W). (28)
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Two additional features remain: The normalized variance
of the sample amplitudes, P.,,, and the relative difference
in sample amplitudes between the center and the edges
of the resolution cell, Py. Their basic definitions are
given in (16) and (18), respectively. For the multisegment
architecture of the feature extractor, they are computed as

22
Puar =1— ;)—I and Py = % -1 (29

where

1 & 1 &
§=fzsk and PI:EZsZ. (30)
k=1 k=1

Only the centers of each of the K time series are used, and
sk is defined as

Sk = |T(N+1)/2,k|- (31

The parameter P,,, is thus the normalized variance of
the amplitudes inside the 3-dB resolution cell without the
application of any data weighting; and Py, is related to the
difference between the unweighted average power inside
the resolution cell and that outside of it, insofar that it
is included in Py. For the Gaussian shaped ideal target
centered inside the window, Py is nominally 0.75 dB above
Py, and Py takes on a value of 0.19. The variance of
the sample amplitudes is also a fixed fraction for Gaussian
shapes for which P,,, is then expected to be 0.13. Values
of zero for both features indicate evenly distributed clutter,
whereas negative values for Py can occur along clutter
edges or in cases of destructive interference of multiple
clutter returns inside the resolution cell.

To summarize, the feature set is based on the following
parameters:

¢  mean Doppler frequency,

Py mean signal power relative to the known measure-
ment noise power W,

¢'m (zero mean Doppler) heterodyned reflection coeffi-
cients,

P, normalized variance of the amplitude distribution
within the measurement window,

Pj;¢ normalized power difference between window cen-
ter and edges.

D. Variations of Reflection Coefficients with
Signal-to-Noise Ratios (SNR's)

Signal strength, and therefore SNR, is a function of the
measurement itself; it therefore does not contain useful
information about the source of radar returns. Only absolute
RCS measurements may be viewed as a feature, but these
are generally not derivable from surveillance radar data.
In fact, in the context of the radar clutter classification
studies reported herein, SNR information has proved to be
detrimental rather than helpful (Stehwien [42]).

A quantitative presentation of the relationship of the
reflection coefficients with SNR is given in Fig. 9. For these
plots, all sample feature vectors were separated into 1-dB
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Fig. 9(a). Mean feature values for aircraft target.

bins according to the value of Uy and then averaged. The
averages of the real and imaginary parts of the reflection
coefficients were plotted against the average values of U,
for each bin. Two important observations may be made
from Figs. 9(a)-9(e):

1. The “symmetric” nature of the spectra of aircraft
echoes and ground clutter is evident from the absence
of meaningful information in the imaginary parts of
the reflection coefficients; see Figs. 9(a) and 9(b).
Estimation errors due to the low number of samples
contribute to the deviation from zero at both the low
and high ends of the plot.

2. The difference in the high-order coefficients of the
bird and weather clutter classes is dramatically visible
in the plots presented in Figs. 9(c)-9(e). Bird clutter
appears to have little meaningful information in the
real part past p3, although the increase in the values of
the imaginary parts indicates the greater likelihood for
asymmetrical spectra. Weather clutter, which includes
both rain and storm systems, has a less defined
cutoff point in the order, although p;’ to pg’ do not
appear very meaningful. It is interesting to note the
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effects of the secondary peak due to windshear. The
difference in the real parts of the reflection coefficients
is slight, whereas it is significant in the imaginary
parts, particularly for p’ and ps’. This establishes
the importance of retaining the imaginary parts in the
feature vector.

E. Class Prototypes

The question to be resolved then is: how can class
prototypes be defined in order to mitigate the dependence
of the reflection coefficients on the signal strength as
evidenced in the plots of Fig. 9? Short of finding some non-
linear transformation that removes this dependence entirely,
comparisons among classes may clearly proceed only for
equal values of the parameter Uj. That, of course, requires
a prototype definition for every possible value of Uy,
which is an unworkable solution. It is possible, however, to
define prototypes for a range of signal strengths, with the
ranges defined such that the nonlinear behavior within them
is limited and manageable using the multivariate normal
assumption.

A definition of this kind is necessarily somewhat arbitrary
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Fig. 9(b). Mean feature values for ground clutter.

since nature rarely provides logical breakpoints for such
efforts. This case is no exception, and Fig. 9 merely em-
phasizes this point. Ultimately, the capacity for the number
of classifiers which can be reasonably constructed and the
requirement for a large number of training samples must be
traded off against the strength of the residual nonlinearities.
While a global minimization of error rates would lead
to a theoretically optimum tradeoff, this minimization is
cumbersome to carry out and quite likely impossible to
achieve with the limited data volumes in research data
bases. It is not at all clear what, if any, improvement would
result from such minimization. The ranges used in this
paper are therefore not likely to be those that would be
used in a real-time implementation. They did, nevertheless,
lead to quite acceptable results. The range breakpoints for
Uy were chosen as follows:

| A B | C | D | E | F |
min 4dB 10dB 17dB 24dB 32dB max

(32)

Most of the data sets fell into ranges B to D, with E
and F' mostly appearing for point-target classes and some
of the bird clutter. The latter became available only when
turning the radar’s STC off. Unfortunately, this was not
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done for the weather clutter data, ,and its strongest data
sets turned out to fall around 23 to 25 dB. Range A was
defined effectively only to allow the identification of weak
moving clutter, since little discriminating information was
expected at such low levels.

VIL

Given the set of features extracted from the radar data in
the manner described in the previous section, we are ready
to undertake the task of classification. In this section, we
consider the classical Bayes decision theory that provides
optimum decision rules when the statistics of the problem
are known. As is customary, we assume a multivariate
Gaussian distribution for the features. The classifier per-
formance so obtained provides a frame of reference for the
neural network classifier studied in the next section.

BAYES CLASSIFICATION

A. Bayes Decision Theory

Designing the classes of interest as ¢;, and the probability
that the d-dimensional feature vector y belongs to any one
of them as P(c; | y), then a simple rule for assignment
of y to c; is one that chooses the class with the largest a
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Fig. 9(c). Mean feature values for bird clutter.

posteriori probability
Plcj|y) > Plei|y),  alli#j. (33

These probabilities are, however, seldom known or directly
measurable. It is more likely that the a priori probabilities
P(c;) are known, along with the class-conditional proba-
bility densities p(y | ¢;), which describe the statistics of the
feature vector y, given the underlying stochastic process
belonging to class ¢;. Then we may use Bayes rule:

Ples|y) = ELeIR(E) G4

where

L

p(y) = _p(y | ci)P(ci) (35)

and L is the number of classes under consideration. Note

that the mixture density p(y) is independent of the index ¢,

and therefore acts only as a scale factor that may be ignored
when searching for the maximum per (33).

It may well be that deciding simply on the basis of

probabilities is insufficient. For example, the cost associated
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with erroneously classifying a flock of birds as rain could
be extremely high, as numerous bird strikes in the past
have demonstrated. The reverse is much more tolerable.
Let the loss incurred by taking action o;, whenever class
c; is the correct class, be A(a;|c;). Then the conditional risk
associated with taking action «;, given the feature vector

y, is

L
R(ai |y) = Mailc;)P(ci |y).  (36)

Jj=1

The optimal decision rule (Bayes classifier) is then to
choose that action «; which presents the smallest risk. It
can be shown (Duda and Hart [1]) that this rule minimizes
the overall Bayes risk R. Combining (34) and (36) yields

Z Mo | ey PILEDPE) 5,

Hence,

L
R(ai | y)p(y) = Y Masi | ¢)P(ci)plyl ¢;).-  (38)

Jj=1
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Fig. 9(d). Mean feature values for rain clutter.

The quantity R(a; | y)p(y) is a scaled risk and may be
tested instead of the risk R(«; | y) without changing the
outcome of the decision. The quantities A(c; | ¢;)P(c;)
present, in effect, a bias toward the most likely classes
and the least costly decisions and are determined by the
nature of the problem itself. In the clutter classification
case, they describe the probabilities of seeing the various
clutter types and the safety consequences resulting from
misclassification.

In the absence of any information indicating otherwise,
the most prudent action may well be to assume that
cach clutter type is equally likely to occur, and that all
misclassifications are equally costly. The latter leads to the
zero-one loss function

0,

i=j
Mai ) =18, = {

0 allig (39
£ 9

which, when substituted in (36) yields

L
Rlai|y) =) Plc;|y)=1-Plei|y).
J#i

(40)
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This risk is now effectively an error rate, and minimizing
this error rate is seen to be equivalent to maximizing the
a posteriori probability as in (33) (maximum a posteriori
probability (MAP) classifier). Further simplifying by setting
P(c;) = 1/L for all ¢ in (34) gives

(Rla; |y) = Dp(y)L = —p(y | i)

and provides a classification rule based solely on the class-
conditional probability density function. Equation (41) leads
logically to the concept of discriminant functions, which
may be used instead of the risk function itself. The clas-
sification rule then assigns feature vector y to class c;
if

(41

all i # j.

In the most general case ¢;(y) = —R(a; | y) and,
for the case of equally likely classes and equally costly
misclassifications, ¢;(y) = p(y | ¢). In either case, the
structure of the classifier is determined by the conditional
densities p(y | ¢;). For computational purposes a sim-
ple structure is desirable, especially in multidimensional,
multiclass problems.

9;(y) > gi(y), (42)
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A simple, and for many situations a fairly realistic density
function is the normal, or Gaussian, density. Its multivariate
form is written as follows:

1

(em) || 172
o [~/ -0 Y Ty -m] @)

p(y) =

where
r =Ely] (44)

> = B[y -mw -w]. (43)

Note that the form of this probability density function
is completely described by the mean vector g and the
covariance matrix . Defining the discriminant function

9:(y) = lnp(y | ;)] (46)

¢ -1
g:(y) =~(1/2)(y ~ )" Y. (v — i) — (d/2)In(27)
(/2] | “47)
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and removing constants yields a new discriminant function
-1
d@)=0-m' Y G-w+u3 ] @9
The change of sign requires g;(y) to be minimized; that is,
y is assigned to class ¢; whenever

9;(y) <gi(y), alli#j. (49

The quantity D;%(y) = (y — p;)* Ei_l(y — ;) is also
known as the squared Mahalanobis distance from y to p;.
The determinant |X;| is the product of the eigenvalues of
%, and as such a measure of the combined variances of
the marginal distributions of y, or the “volume” inside the
multivariate distribution’s equiprobability contours. Adding
the term In|X;| to D;%(y) thus biases the discriminant
toward the denser, lower variance classes.

B. Experimental Results

The number of possible classification and testing scenar-
ios is extremely large and cannot possibly be fully explored
in this paper. Hence, only a representative sample of results
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Table 1 Experimental 6-Class Classification Results

labeled birds thunder rain aircraft cars,trucks targets total
samples: storms

prototype (58 281) (6766) (19 168) (5685) (2483) (10 385) (102 768)
name

rejected 37 0.0 0.1 5.1 31 0.1 12.1
birds 68.3 29 4.6 0.5 54 0.1 81.7
thunder 9.9 75.6 27.1 5.5 7.8 0.7 126.6
storms

rain 6.6 12.5 64.0 0.2 1.6 0.1 84.9
aircraft 4.2 45 1.7 26.7 14.8 25 54.5
cars and 6.0 1.0 1.6 4.6 471 21 62.4
trucks

synthetic 13 35 0.9 57.3 20.3 94.4 177.7
targets

total 100.0 100.0 100.0 100.0 100.0 100.0 600.0
labeled birds weather targets total

samples:

prototype (58 281) (25 934) (8168) (92 383)

name

rejected 37 0.1 4.5 8.3

birds 68.3 42 2.0 74.4

weather 16.5 90.3 6.8 113.6

targets 11.6 5.4 86.7 103.7

total 100.0 100.0 100.0 300.0

is presented. One of the difficulties is the division of classes
into subclasses. For example, a weather clutter class may be
subdivided into rain (little wind or turbulence) and storms
(thunderstorms, systems with considerable turbulence), and
perhaps even rain with a detectable windshear component.
Clearly, there will be significant overlap between those
classes, but misclassification among them is not serious. In
terms of the ability to discriminate between major classes,
such as bird clutter, weather clutter, and point targets
(aircraft, cars and trucks), it is difficult to predict which
scenario is preferable. If each subclass provides a “tight”
prototype, then the combined decision boundaries might
be expected to conform to the true cluster shape more
closely and result in a better overall performance. On the
other hand, the greater number of classes also provides
more opportunities for errors to occur and the classifier
may become biased toward that major class for which the
greatest number of subclasses has been defined. A greater
number of classes also requires more training samples to
maintain the quality of each of the estimates. Subdividing
a fixed number of training samples among more class
prototypes will reduce the quality of each.
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Table 1 shows the percentage of labeled samples
(columns) assigned to each class (rows). The sum of the
row percentages is a measure of the bias toward the class
at the expense of another. The individual class assignments
are listed in the upper table. The results of combining
these assignments (excluding those for synthetic targets)
into major classes is shown in the lower table. The mean
classification accuracy is then 81.8%, the standard deviation
of the biases is 16.6%. Table 1 presents classification results
using samples from an SNR range of 17 to 24 dB. The set of
eleven features used in the classification were as follows:
uo, Relp's), Im[p's), Relp's], Imlp's), Relps], Im[p"],
Relp';], Im[p'5], Puars Pais- Six classes were defined and
tested against over 100 000 labeled samples. In the case
of only a small number of samples being available (such
as for the car and truck class), all samples were used for
both training and testing and the results must therefore be
examined with caution. This type of testing the training
samples has been shown to be always optimistic (Foley
[56]), and researchers in pattern recognition have long
suggested the use of the so-called leave-one-out method
of error rate estimation [34]. This method requires as many
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classifiers to be trained as there are samples to be tested and
is, for obvious reasons, not practical for the large volumes
of radar data. In addition, Glick [57] pointed out that the
leave-one-out method, while being an unbiased estimator,
has a rather large variance. Despite the optimistic results,
testing the training data is useful when the number of
samples is large. Testing a separate test data set, which
Wwas not used for classifier training, provides pessimistic
results and can be used when the sample set is large
enough to allow such subdivision without sacrificing the
quality of the class prototype. Foley [56] showed that both
methods converge for large sample sizes, and for sample
size-to-dimensionality ratios greater than 10 the difference
is small. Ratios used for these experiments exceeded this
value by a large margin. The relatively small number of
samples available for the target classes (approximately 700
aircraft and 200 to 300 cars and trucks resulting in 21 384
and 7447 feature vectors, respectively) has been partially
compensated for by the inclusion of the synthetic target
class (53 999 feature vectors arising from approximately
2700 targets), and the assignment of erroneously classified
samples to related classes enhances the confidence that the
prototypes, as developed, are substantially correct. A better
measure of the quality of the prototypes is to combine the
classifier decisions into major classes. This results in an
average percentage of correct classification of 81.8%, which
should be considered quite satisfactory for a single scan,
single resolution cell decision.

Another measure of the quality of the prototypes is the
bias toward one class at the expense of another. If no
one class is favored by the classifier, then every class
is expected to receive an equal number of assignments,
assuming of course that each labeled sample set also
contains an equal number of samples. Of course, the
samples must be distributed according to the multivariate
normal density with which the prototype was constructed,
and the a priori probabilities of each class occurring must
be equal. Summing the percentage of assignments from all
sample sets into a given class gives such a measure for that
class, and would take on an equal value for each class if
the classifier is unbiased (this value would be 100% only if
no rejection occurred). To obtain a measure from the entire
classifier, one might compute the standard deviation of all
bias measures, which is desired to be as small as possible.

The results in Table 1 show a slight bias toward the
weather class at the expense of the bird class. The bias
toward synthetic targets in the upper table is of less concern
since it stems mostly from the similar classes of aircraft
and cars and trucks. The source of this bias is not easy
to identify, since it is related to how the actual sample
statistics deviate from the multivariate normal density and
the relative “location” of the prototype in the feature
space. While such a bias is undesirable, it is not clear
what should be done about it. The final classifier design,
which will be based on a complete risk analysis, must take
such biases into account when considering the costs of
misclassification. Minimizing the total cost with respect to
the experimental performance will introduce its own biases
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to counteract the ones currently present. Accordingly, no
further action toward eliminating these biases was taken in
this research.

The table shows the percentage of labeled samples
(columns) assigned to each class (rows). The sum of the
Tow percentages is a measure of the bias toward the class
at the expense of another. The individual class assignments
are listed in the upper table. The results of combining
these assignments (excluding those for synthetic targets)
into major classes is shown in the bottom table. The mean
classification accuracy is then 81.8%, the standard deviation
of the biases is 16.6%. All data have been taken from an
SNR range of 17 to 24 dB.

VIII. NEURAL NETWORK CLASSIFIER USING THE
BACK-PROPAGATION ALGORITHM

In this section, we present results of ATC radar clutter
classification using a multilayer artificial neural network.
Artificial neural networks (or neurocomputers) are an al-
ternate model of computation based on design principles
derived from biological neural systems. In many respects,
neurocomputers are superior to conventional (von Neumann
type) computers (Lippmann [61]; Sejnowski and Rosen-
berg [62]). The motivation for taking the neural network
approach to solve the radar clutter classification problem
is based on three principal reasons: 1) a neural network
has an intrinsic ability to generalize; 2) it makes weaker
assumptions about the statistics of the input data than a
parametric Bayes classifier; and 3) a neural network is
capable of forming highly nonlinear decision boundaries
in the feature space and therefore has the potential of out-
performing a parametric Bayes classifier when the feature
statistics deviate significantly from the assumed Gaussian
statistics.

In this section, we first present an introduction to the
popular back-propagation algorithm (Rumelhart e al. [63])
which is used to train the multilayer neural network in an
off-line manner. Then we summarize the design consid-
erations, and experimental results obtained with a neural
network classifier based on this algorithm.

A. Multilayer Neural Network

A multilayer neural network consists of an input layer,
one or more hidden layers, and an output layer. Each
layer (except for the input layer) is comprised of a num-
ber of “neurons” or processing units, each one of which
consists of a linear combiner and a nonlinear device as
in Fig. 10(a). The linear combiner uses “synapses” of
adjustable “strengths” or weights. A typical 4-layer neural
network is depicted in Fig. 10(b).

In the study reported in this paper, two specific neural
network configurations are considered: a 3-layer network
(input layer, hidden layer, and output layer), and a 4-layer
network (input layer, two hidden layers, and output layer).

Ordinarily, a sigmoidal logistic function is used to de-
scribe the input-output relation of the nonlinear device.
Thus in mathematical terms, the behavior of neuron jis

HAYKIN: RADAR CLUTTER IN AIR TRAFFIC CONTROL ENVIRONMENT



Nonlinear
Threshold y](n)
Unit

Input First Second Output
Layer Hidden Hidden Layer
of Layer Layer of
Source of of Cornputation
Nodes Computation Computation Nodes
Nodes Nodes
(b)

Fig. 10. Architecture of a layered neural network. (a) Neuron or pro-
cessing unit in the network. (b) Four-layer neural network.

described by the pair of relations:
netj(n) = Y wij(n)yi(n) + hi(n)  (50)

and

1

yi(n) = filnet; (n) = T oy

D
where n refers to presentation of the nth input pattern; w;;
is the weight from the i-th neuron to the jth neuron; y; is
the ith input to the jth neuron; h; is the bias of the jth
neuron; net; is a weighted sum obtained from the linear
combiner; f;( ) is the nonlinearity function; and y; is the
output from neuron j.

B. Training of the Neural Network

In order to apply neural network techniques to solve a
pattern classification problem, an algorithm must be used
to train the network. The back-propagation algorithm is
one of the most popular and yet very powerful learning
algorithms available for this function. This algorithm was
first developed by Werbos [64], and later rediscovered
by several other researchers independently (Parker [66];
Rumelhart et al., [63]; LeCun, {65]). In the following, we
briefly describe the back-propagation algorithm.

There are two phases involved in back-propagation learn-
ing. During the first phase, inputs are presented to the
network, which propagate forward through the network to
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produce an actual output y;(n) for each neuron in the
output layer. The activity of each neuron in the network
is determined by (50) and (51). We then compare a desired
response d;(n) with the corresponding output y;(n) if
neuron j is in the output layer, to generate an error signal
ej(n):

ej(n) = dj(n) — y;(n). (52)

In the case of pattern classification, the desired responses
{d;} are defined to be the encoded class labels. For
example, for a neural network with three output neurons
representing the three different classes, we assign {d;} =
{1,0,0} for the first class, {d;} = {0,1,0} for the second
class, and {dj} = {0,0, 1} for the third class.

We may thus define an index of performance €(n) (for
nth input pattern):

)= 3 - pwl )

This index of performance is minimized by the weight
update rule.

During the second phase, the error signals (computed in
the output layer) propagate backward through the network
to allow the recursive computation of the weight updates.
The essence of the back-propagation algorithm is in the
second phase. Applying the “chain rule” to differentiate
(53) with respect to w;;(n), we get

n
aiii(i) = _6j(7b)yi(n‘) (54

where §;(n) is the “modulated” error signal. It can be
shown (Haykin [68]) that for the output neurons, the
“modulated” error signal is

8(n) = fi(netj(n))e;(n) (55)
whereas for the hidden neurons we have

§;(n) = fj(net;(n)) Y Sx(n)wx(n).  (56)
k

The index k refers to the kth neuron in the layer above the
one where neuron j is located.

For the network to learn, the generalized delta rule [63] is
applied to update the network weight w;j(n + 1), as shown
by

Je(n)
nawij(n)
+nd;(n)yi(n) (57

where 7 is the learning rate (or adaptation constant) that
controls the step size of the weight updates. In general,
a momentum term is also included in the above weight
update rule to filter out high-frequency variations of the
error surface in the weight parameter space [63]. Thus we
have

wij(n+1) = wi;(n) - = wi;(n)

wij(n+ 1) = wi;(n) + n8;(n)yi(n) + TAw(n — 1).
(58)
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The back-propagation algorithm that uses the weight up-
date rule in (58) is referred to as the “conventional”
back-propagation method. To start the back-propagation
algorithm, the weights and biases are initialized to small
random values uniformly distributed between —0.5 and
0.5. The learning rate  and momentum factor T are small
constants whose values lie between 0 and 1.

Although the weight update rule in (58) has been widely
used in training multilayer networks, it is often found
that its rate of convergence is too slow to be useful for
many practical applications. The modified form of the
back-propagation algorithm applied in this paper combines
the learning rate adaptation method (Jacobs [69]) with
the gradient reuse method (Hush and Salas [70]). This
modified method improves the rate of convergence of the
back-propagation learning process, and yet reduces the
computational complexity arising from using the learning
rate adaptation method.

In the modified back-propagation method, every weight
w;; in the network is given its own learning rate 75, and
the training data set is divided into a number of epochs
each containing K training patterns. The weight w;; and
learning rate 7;; are updated every time after an entire
training epoch has been presented to the network. The
weight and learning rate updating rules of the modified
back-propagation algorithm can be summarized as follows
[69], [71]

K
wij(n+1) = wij(n) + mij(n+ 1) Y 8x;(n)ywi(n)

k=1

+ TAw;j(n — 1) (59)
nij(n + 1) = ni5(n) + An;(n) (60)

Q, if S(n—1)D(n) >0

Anij(n) =4 — énij(n), if S(n-1)D(n) <0

0, otherwise
(61)
K
_ Oex(n)

D(n) = 2 By n) (62)
S(n) = (1 -©)D(n) + ©S(n - 1). (63)

The index n refers to the nth epoch in the training data;
the index k refers to the kth pattern in an epoch containing
K patterns; 6;; is the modulated error signal of neuron j
with the kth pattern in an epoch; yy; refers to the actual
computed output of neuron i with the kth pattern in an
epoch; e is the index of performance to be minimized by
the weight update rule with the kth input pattern; finally,
2, ®, and O (all of which have values between 0 and 1)
are the control parameters.
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C. Experimental Results

As indicated in Section VI, a prediction-error filter of
order 5 is used as the feature extractor. Following the
terminology described in that section, the computed features
are summarized as: [uo, Re{p',}, Im{p's}, Re{p's},
Im{p/s}, Re{ps}, Tm{p/,}, Relp's}, Im{p's}, Poar.
Pyirl, ¢, and U,. The eleven features inside the square
brackets are used to form the input vector of the neural
classifier; hence the input layer of the multilayer network
is composed of eleven units.

With three major categories of radar clutter of interest,
namely, weather, birds, and ground, we observe that the first
two classes are due to moving objects, whereas the last one
is due to objects that are essentially stationary. Moreover,
we note that the heterodyned reflection coefficients of
ground clutter are of a similar nature to those of aircraft
targets, as evidenced by the results presented in Section VI
and additional results presented in (Stehwien [42]). Hence,
no distinction is made between ground and aircraft targets in
the neural classifier training phase. The design of the neural
classifier using this prior information about the input data
may thus be summarized as follows:

1. The neural classifier is trained to distinguish the three
moving object classes, aircraft targets, weather, and
birds, based on the output of the feature extractor.
The computed Doppler frequencies (i.e., the values
of ¢) are disregarded during the training phase.

2. Testing data sets, which may contain the ground
class, are fed into the feature extractor. The computed
features are passed to the classifier, which will classify
the input into a) birds, b) weather, or c) target
class. The class label is determined by recognizing
the output neuron which generates the largest output
value among others.

We may identify the ground class of radar returns by
recognizing the small value of the mean Doppler frequency
¢ of such returns. This observation is similar to the MTI
principle. We recall that ¢ equals the phase of the first
reflection coefficient p;. Specifically, we may feed the
classified results (encoded labels), together with their mean
Doppler frequencies, into a post-processing unit. If the
mean Doppler frequency ¢ exceeds a prescribed threshold
(£0.025 f,, say, where f; is the PRF), the post-processing
unit simply passes the input label to the output. Otherwise,
it sends a ground label as output. Clearly, this form of post-
processing may be used with a Bayes or neural network
classifier.

1) Formation of training and testing data sets: There are
two different ways of forming the training and testing data
sets. One way is to select feature patterns randomly from
available feature data base described in Table 1 in Section
VII. We refer to this first way as the shuffled data set, which
is summarized in Table 2. The other way is merely to split
the available feature files into two parts, and to use the first
part for training and the second part for testing. We refer
to this second way as the split data set.

Clearly, these two ways of forming the training and
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Table 2 The Training and Testing Data Sets (Shuffled)

Class (subclass) Training Testing
BIRDS: 6000 6000
WEATHER: (storm) 3000 3000
(rain) 3000 3000
TARGET: (aircraft) 2000 2000
(cars) 2000 480
(synthetic) 2000 2000
Total: 18 000 16 480

Table 3 Classification Results on Training Data using a Bayes
Classifier

bird storm rain aircraft  car synthetic

Original 68.3 75.6 64.0 26.7 47.1 94.4
Shuffled 70.6 74.9 62.2 29.4 49.7 95.2

Split 71.2 64.9 60.3 24.6 48.1 92.5

testing data will result in different statistical properties
for the input into the neural network classifier, because of
the limited number of feature patterns available. In order
to demonstrate this statistical variation, a Bayes classifier
similar to the one in Section VII was used to test the training
data sets, with the results being summarized in Table 3.
Here we observe that the shuffled data set exhibits almost
an identical classification performance as the original data
set of Table 1. On the other hand, because the split data set
comes from an ordered subset of the original data base, it is
unable to characterize some of the statistics of the original
data set. In particular, a large variation in the storm subclass
can be observed.

Therefore, in order to select a subset from the original
data, which carries nearly identical statistical properties as
in the original one, the shuffled data set should be used.
Accordingly, the comparison between the neural network
classifier and the Bayes classifier is based on this shuffled
data set. Also, the training and test data sets used for this
neural network study were all selected from the SNR range
of 17-24 dB.

2) Network configurations: Neural network theory, in its
present form, is inadequate when it comes to specifying
the desired configuration of a neural network classifier
for a prescribed set of input features. If the network
is too small, it may be unable to capture the statistical
properties of the input data. On the other hand, if the
network is too large, it may learn details of the undesired
noise background in the input data, and thus its ability
to generalize is compromised. The common practice is to
use an experimental approach for specifying a satisfactory
network configuration. Indeed, it is for this reason that we
try to reduce the time required for network training as far
as possible, by using a parallel computer for training, an
accelerated convergence technique, or both.
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Table 4 Classification Results (11-24-12-3 Network)
on Testing Data (Shuffied)

Labeled  No. of Classification rate (%)

sub- patterns
class in Bird Weather  Target Average

testing

data
Birds 6000 84.4 10.8 4.8 844
Storm 3000 5.6 89.3 5.1
Rain 3000 5.5 93.1 14 91.2
Aircraft 2000 2.1 1.7 96.2
Cars 480 6.5 3.7 89.8 949
Synthetic 2000 0.4 0.3 99.3

90.2

In any event, through a series of experiments involv-
ing different network sizes, it was discovered that the
4-layer nmetwork with size 11-24-12-3 delivers the best
generalization performance. For the sake of comparison,
a 3-layer network with size 11-42-3 was constructed,
which has a similar memory capacity to the 11-24-12-3
network. Convergence was also achieved for this 3-layer
network, but the classification accuracy was lower than
the corresponding 4-layer network. Learning curves for
these two networks with the conventional back-propagation
method, and for the 11-24—12-3 network with the modified
back-propagation method, are shown in Fig. 11. In this
figure, the total squared sum of errors (TSSE) is plotted
against the number of training sweeps, which is the number
of passes through the training data set. These learning
curves confirm that the modified method indeed converges
faster than its conventional counterpart.

For the conventional back-propagation method, the learn-
ing rate 7 is chosen to be 0.01. The momentum factor 7
is fixed at 0.1. For the modified back-propagation method,
the initial learning rates 7;;(0) are all set to be 0.05. The
control parameters 2, ®, and © are chosen to be 0.002,
0.1, and 0.6, respectively.

In Table 4, we summarize the clutter classification per-
formance of the 11-24-12-3 network. From this table, the
misclassification of each clutter type can be observed. We
feed the classifier with feature data from six subclasses,
and classify them into one of three major classes; a) birds,
b) weather, and c) target. An average classification rate of
90.2% is observed.

Comparing Table 4 to Table 1, we also observe an
improvement in the classification accuracy of the birds and
target classes. This improvement may be due to the fact
that the feature vectors representing these two classes de-
viate markedly from the multivariate Gaussian assumption.
Hence, the advantage of the neural network classifier, which
is capable of forming highly nonlinear decision boundaries
in the feature space, pays off in improving the accuracy
of classifying radar returns from birds and targets. For
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Fig. 11. Learning curves for multilayer networks with different sizes and different forms of the back-propagation algorithm.

the weather class, on the other hand, we observe that
only a small gain is made by using the neural network
classifier. This suggests that the feature vector representing
the weather class may be modeled closely as a multivariate
Gaussian distribution.

IX. DISCUSSION AND CONCLUSIONS

The motivation for radar clutter classification in an air
traffic control environment is to identify hazardous areas
of weather storms and flocks of migrating birds, and
thereby vector aircraft around them. In this paper, we
have presented an experimental study of the radar clutter
classification problem in such an environment using a
ground-based coherent radar system. The study is based
on real-life data collected at operational radar sites. The
important findings of the study may be summarized as
follows:

1) The use of reflection coefficients, computed using the
multisegment Burg algorithm, provides a practical method
for the extraction of radar features based on second-order
statistics.

2) A direct comparison of the performance of the Bayes
classifier presented in Section VII-B with that of the neural
network classifier presented in Section VII-C is rather
difficult to make for two reasons. First, in the case of the
Bayes classifier, an algorithm was included in its design to
reject data that clearly did not belong to any of the classes
under consideration. Second, the neural network classifier
included the use of synthetic targets, which had the effect of
raising the classification rate of targets. Nevertheless, these
two independent studies of radar clutter classification tend
to support each other in two important aspects:

a) They both confirm the utility of the reflection
coefficients in describing the second-order statistics of
radar returns.
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b) They demonstrate that there is sufficient information
content in the different types of radar clutter to enable
their classification. Moreover, the extensive PPI images
reported in [42] and [71] show that both the Bayes classifier
and the neural network classifier are sufficiently robust for
operational use.

The superior performance of the neural network classifier
over the parametric Bayes classifier reported herein should
not be taken as a proof. Rather, it should be viewed as
a practical demonstration of the potential value of neural
networks as a new tool for the classification of radar clutter.

3) In training the neural network classifier, no distinction
is made between radar echoes for aircraft targets and
ground, because their heterodyned spectral parameters have
similar characteristics. Discrimination between these two
classes of radar returns is made on the basis of the mean
Doppler frequency represented by the phase of the first re-
flection coefficient. This procedure is similar in philosophy
to the well known MTI principle.

4) The results of classification performance, presented
for both the Bayes classifier and the neural network clas-
sifier, were based on data collected by a coherent radar
on a single antenna scan. Clearly, the performance of a
classifier, be it of a Bayes or neural network type, can be
improved by processing data collected on successive scans
of the antenna.

The extraction of radar features, exemplified by the
reflection coefficients and power-related parameters, are
based entirely on second-order statistics of the radar data.
Yet, useful information is contained in higher-order statis-
tics. Here we recognize that radar echoes, particularly those
from aircraft and ground, exhibit significant deviations from
a Gaussian distribution. It is therefore anticipated that by
adding features based on higher-order statistics, a further
improvement in clutter classification performance may be
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attainable. This observation has indeed been confirmed [72].

The coherent radar used to collect the database that was
used to perform the clutter classifications reported herein
was operated at L-band frequencies. Although the radar had
provisions for both horizontal and vertical polarizations (see
Appendix A), unfortunately (due to unforseen difficulties)
only one channel was available for the data collection. It is
quite likely that the radar classification theory described in
this paper may yield better results if there were access to
a weather radar with an operating frequency (e.g., C-band)
better suited for the remote sensing of weather systems,
or if there were access to different polarization channels.
Indeed, it would be most interesting to apply our theory to
data collected from the new generation of weather radars,
NEXRAD [73] and TDWR [74], which may have more
suitable parameters.

Finally, we should mention that the Bayes and neural
network classifiers as described herein could be used on
MTD radars that employ fixed PRF’s during each coherent
processing interval (CPI). Feature extractors designed for
use with staggered PRF’s are more complicated due to
the use of nonuniform sampling [42]. Staggered PRF’s are
intended to achieve specific functions in conjunction with
MTI processors.

APPENDIX A
TRACS-ASR SPECIFICATIONS

The radar data used throughout this research were
recorded from two of the new L-band air traffic control
area surveillance radars (ASR) which form part of the
Terminal Radar and Control Systems (TRACS) installed
by the DND at six Canadian Forces Bases.These two
radars, which are derivatives of the Westinghouse ARSR-
3, were located at CFB Trenton and CFB Moose Jaw.
Other TRACS components are a SSR, a digital target
extractor and correlator, a computer control system and
an instrument flight rule control center (IFRCC) with fully
synthesized digital displays at the controller stations. The
system was designed to modernize air traffic control at
Canada’s busiest military airports and terminal areas. Since
it was not meant for en route surveillance, which is handled
by the Ministry of Transport, the original 200 nautical
mile range of the ARSR-3 was reduced to 80 nmi, with
a corresponding increase in the PRF range from 310-365
Hz to 650—675 Hz, an increase in antenna scan rate from
5 to 12 rpm, and a decrease in peak power from 5 to 1.5
MW.

The radar system is fully redundant, with each channel
operating on a different frequency and polarization. Fre-
quency and polarization diversity can thus be achieved
during diplex operation. Circular polarization improves
detection in rain, and the combination of both left and
right hand polarized RF signals provides a weather channel.
Target reports are correlated with SSR returns and sent
independently to the central computer (a Data General Nova
System), where they are combined and displayed on the
controller’s display. Unfortunately, only one channel was
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operational at the time of the recordings and it was not
possible to take advantage of the diversity feature. The
following characteristics of the radar therefore refer only

to the channel from which the data was taken.

Site:
Transmitter

frequency of
operation (L-band)

wavelength

transmitter output
power

transmitter type
pulse width

PRF (if fixed),
selectable

Antenna

polarization (if
linear)

polarization (if
circular)

antenna feed

gain (low beam)
gain (high beam)
scan rate (nominal)

azimuth beamwidth
(one-way, 3 dB)

hits per beamwidth
(approximate)

azimuth sidelobes

elevation
beamwidth
(one-way, 3 dB)

elevation
beampattern

height above ground
(electrical center)

Receiver

STC
(programmable)
maximum
attenuation

receiver noise figure
(low beam)

receiver noise figure
(high beam)

bandwidth
dynamic range

video output

Moose Jaw Trenton

1343.784 MHz 1307.538 MHz

22.305 cm 22,924 cm
1.5 MW min

tunable klystron

2 pus

657.8, 674.3 Hz

horizontal vertical

right hand left hand

dual beam, switchable
33 db min
31 dB min

2 to 12.1 rpm

1.5°

1350 14

22 dB min

40

modified csc?

22'm (73 ft)

63 dB

4 dB max

3.5 dB max

500 kHz
80 dB min
coherent I and Q@
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Radar Video Data
Parameters

radar visible range
instrumented range
A/D resolution

digital video
dynamic range
sampling frequency
range sampling
interval

azimuth sampling
interval

azimuth accuracy

Signal Processing
Features

MTI

MTI improvement
factor

integrated
cancellation ratio
LOG CFAR (post
MTI)
pulse-to-pulse
integrator

detector

up to 120 nmi
80 nmi
10 bits (9+sign)

46.3 dB 49.6 dB
1294.6 kHz

1/16 nmi (116 m)

0.088°

within 0.264°

4 pulse I and Q
50 dB

18 dB
8 sample (1.3 nmi)

single pole feedback

adaptive threshold

APPENDIX B
EVIDENCE FOR BIRD CLUTTER

It was found extremely difficult to positively identify
“bird clutter” as having actually been caused by migrating
birds. No direct visual sightings of any flock was made
that could be correlated with a target on the PPI of the
radar. This difficulty was compounded by the cone of
silence above the radar, which caused any target tracking
inbound to disappear from the radar at about 3 to 6
miles. Positive identification of bird echoes during radar
studies has certainly never been easy (Barry et al. [12];
Blokpoel [75]), and repeated attempts to sight the flocks
at the estimated time of overflight failed. A part of the
problem may well have been the small size of the birds
against the night sky, another the lack of night vision
glasses.

There is, however, a considerable amount of other evi-
dence available. With respect to the radar echoes, speed and
direction of travel (40 to 80 kn, north-west) coincided with
what may be reasonably expected from migrating birds. The
characteristic fluctuations in return strength were always
present making it in fact rather difficult to track any one
flock for long distances. Since most large geese had already
passed through the area by the time of the trip, only small
birds such as ducks, coots, sandpipers, and passerines would
have made up the majority of these flocks. Consequently,
few single bird echoes would likely be detected, and no
targets were specifically identified as such at the time of
recording.

The strength of the returns together with their apparent
flight altitudes also pointed to the clutter being caused
by birds. Time exposure photographs taken following the
recording sessions showed large numbers of tracks of
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Fig. 12. PPI time exposure photographs of bird clutter.

targets traveling in the north-west direction (Fig. 12). The
cone of silence is very apparent, as is the notch in the STC
curve at 24 miles. The number of targets detected in these
ranges relative to the number elsewhere (less than one half
or even one third) indicates that the RCS of most targets
was probably between 50 and 200 cm?. This coincides well
with the expected radar cross-sections for migrating birds
and bird flocks of 10 to 500 cm? [6], [22].

Flight altitudes depend largely on the weather, particu-
larly wind and cloud cover, but are expected to be mostly
below 10 000 ft. (Richardson [76], [77]; Blokpoel [75];
Blokpoel and Burton [78]; Blokpoel [8]). Although south-
east winds were sometimes forecast for high altitudes,
such favorable winds were mostly found only at the lower
altitudes. The prevailing winds in Moose Jaw are wester-
lies, and south-east winds at ground level frequently turn
to become westerly at high altitudes. Hence, the largest
concentration of birds were expected to fly within the first
few thousand feet above the ground. The photographs show
a rather high density of clutter inside 20 miles, and suggest
that the flight altitudes were indeed below 8000 ft agl.
The poor visibility of the targets to the west, where a
marked radar shadow blocks low altitude targets, leads to
the additional conclusion that the great majority of birds
must have been traveling below 3000 ft agl and in large
flocks (200 cm?) at most times. On the other hand, the
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Fig. 13. Simulated PPI images of processed radar data including bird
clutter,

high densities present beyond 30 nmi require flight altitudes
of at least 1000 to 4000 ft agl depending on target size
(unless anomalous propagation conditions exist). Indeed,
some strong targets were seen out to 50 miles to the
south, where high terrain produces a rather pronounced
radar shadow. This implies that some flocks, at least, were
traveling as high as 6000 to 8000 ft agl. In those cases,
however, direction of travel tended to differ from those
at lower altitudes because of the wind shift. At 55 to
60 miles most targets were found to disappear, with only
the largest flocks (200 cm? and larger) visible beyond 65
miles.

Compelling evidence for the “bird clutter” is also the
fact that it was never seen on unfavorable nights. Yet
it was always visible on favorable nights, except when
obscured by strong inversion related clutter. This clutter
was at times so strong that considerable sidelobe “ringing”
was generated, which looked very similar to bird clutter.
The time exposure photographs did, however, subsequently
show the presence of bird target tracks even under these
conditions.

Analysis of data from the tapes also pointed toward
bird clutter. Performing scan-to-scan integration over one
to five minute segments (up to 64 scans) showed the
same tracks seen on the time exposure photographs. From
these, precise directions of travel could be determined.
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SNR'’s ranged from virtually undiscernible to 15 dB when
STC was turned on. Clutter strengths of up to 35 dB
were found when turned off. Doppler frequencies ranged
from zero to up to 400 Hz, corresponding to an upper
speed of travel of about 85 kn. Airspeeds are generally
not this high (Blokpoel [75]; Richardson [79], [80]), but
groundspeeds of this magnitude are possible during periods
of favorable winds (Barry et al. [12]; Muehe et al. [21]).
The average direction of travel was also discernible as
the bearing from the radar where the minimum Doppler
frequency occurred (most negative, that is the birds are
flying away from the radar). This was generally around
325° true, and coincided well with what was expected. It
is interesting to note that CFB Cold Lake (another TRACS
site) is located 300 nmi to the north-west (at a bearing of
326.5° true) and in the same general direction as the birds
were found to travel (in fact, the direction of travel evident
from Fig. 13 is 326°!). Perhaps none of these arguments
constitute a “proof” of the observed clutter being caused
by birds, but it surely is strong evidence. An altcrnate
explanation for its source is certainly not immediately
apparent.

Nonradar evidence of migration activity came from sev-
eral sources. A number of telephone conversations were
held with biologists at the Canadian Wildlife Service office
in Saskatoon. The CWS does not actively monitor the
spring migration (unlike the fall migration, due to hunting
activity), but information was obtained on the most likely
species to have migrated at that time, including their fly-
ways and staging areas. DND itself does, however, monitor
and predict bird migration activity at CFB Cold Lake using
a long-range high power L-band radar (not the TRACS-
ASR). Predictions are made using a technique devised
by the CWS (Blokpoel [9]; Blokpoel and Gauthier [81]),
and is based on such factors as date, forecast upper wind
directions, air temperatures, cloud cover and precipitation.
Migration activity is confirmed with polaroid photographs
of the PPI taken hourly and exposed for ten minutes.
Experience with prediction success rates is then taken into
account to refine new predictions. Periodic comparisons
between the Cold Lake predictions and those made for
Moose Jaw showed very similar conditions, which was not
unexpected due to their relative proximity. Even though
there are staging areas between these two air bases, some
species of birds fly continuously for as long as 8 to 10 hours
and could pass over both locations the same night. Polaroid
photographs taken on two particularly heavy clutter nights
for Moose Jaw confirmed the presence of birds at Cold
Lake as well.

Finally, the presence of newly arrived birds was con-
firmed after a strong migration night, when numerous ducks
and many other bird species were spotted in virtually every
slough and pothole in the area south of Moose Jaw. While
the ducks would not likely have migrated further, the large
number of swans (approximately 1000) sighted on Old
Wives Lake, a bird sanctuary and staging area about 25
miles south-west of Moose Jaw, would have moved on and
may well be part of the recorded bird clutter.
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