Cognitive Dynamic Systems

Simon Haykin McMaster University Hamilton, Ontario, Canada haykin@mcmaster.ca http://soma.mcmaster.ca

- 1. What is Cognition?
- 2. Cognitive Dynamic Systems Defined
- 3. Emerging Applications
- 4. Global Feedback
- 5. Why sub-optimality should be the objective of cognitive dynamic systems?
- 6. The Bayesian Filter: A powerful tool for cognitive information processing
- 7. Cubature Kalman Filter
- 8. Properties of the Cubature Kalman Filter
- 9. On-going Research Projects in My Laboratory
- 10. Concluding Remark

Acknowledgements

1. What is Cognition?

According to the Oxford English Dictionary: Cognition is

Knowing,	Knowledge Knowledge Acquisition Knowledge Representation Contextual Knowledge Storage of Knowledge
Perceiving,	Perception Sensing of the Environment Adaptation to the Environment Learning from the Environment
or Conceiving	Dealing with Uncertainty: 1. Probabilistic Reasoning 2. Hypothesizing and Decision-making "The Bayesian framework"
an Act	Control Approximate Dynamic Programming
etc.	Energy Efficiency Robustness

The human brain has all these attributes, and there is plausible evidence for the Bayesian framework -- hence the "Bayesian brain".

2. Cognitive Dynamic Systems Defined

A Cognitive Dynamic System is a system that processes information over the course of time by performing the following functions:

- Sense the environment;
- *learn* from the environment and adapt to its statistical variations;
- build a *predictive model* of prescribed aspects of the environment

and thereby develop rules of behaviour for the execution of prescribed tasks, in the face of environmental uncertainties, efficiently and reliably in a cost-effective manner.

3. Emerging Applications

Cognitive radio
(Candidate for 5th generation wireless communications)

Cognitive radar

Cognitive car

Cognitive genome

•

•

•

Cognitive optimization

Cognitive software

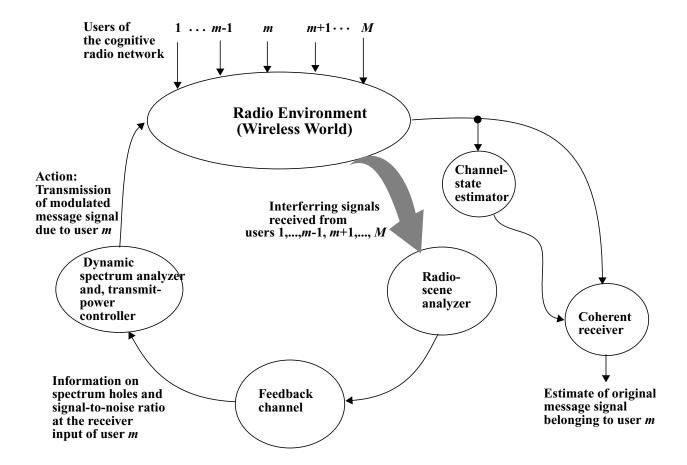
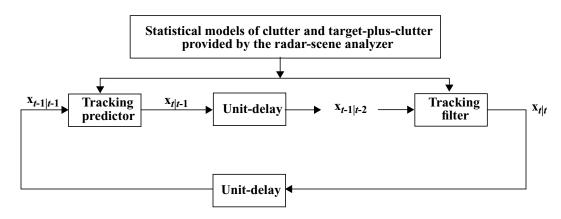


Figure 1: Cognitive signal-processing cycle for user m of cognitive radio network; the diagram also includes elements of the receiver of user m



Notations

t: discrete-time

 $\mathbf{x}_{t|t}$: filtered state vector of probabilities of targets being present in the search space at t given spectral measurements up to and including time t

The other data vectors in the diagram are similarly defined

Figure 2: Block diagram of the Bayesian direct filtering system

4. Global Feedback

"A Facilitator of Computational Intelligence"

- The human brain is a living example of a cognitive dynamic system with global feedback in many of its parts, be that the visual system, auditory system, or motor control.
- Global feedback is responsible for the coordination of different constituents of a cognitive dynamic system.
- Global feedback is an inherent property of all cognitive dynamic systems, but global feedback by itself will not make a dynamic system cognitive.

5. Why sub-optimality should be the objective of cognitive dynamic systems?

- Optimality of performance versus robustness of behaviour.
- Global optimality of a cognitive dynamic system is not practically feasible:
 - Infeasible computability
 - Curse-of-dimensionality
 - Large-scale nature of the system

Hence, the practical requirement of having to settle for a sub-optimal solution of the system design

 Trade-off global optimality for computational tractability and robust behaviour.

Criterion for sub-optimality

DO AS BEST AS YOU CAN, AND NOT MORE

• This statement is the essence of what the human brain does on a daily basis:

Provide the "best" solution in the most reliable fashion for the task at hand, given limited resources.

Key question: How do we define "best"?

6. The Bayesian Filter: A powerful tool for cognitive information processing

Problem statement:

Given a nonlinear dynamic system, estimate the *hidden state* of the system in a recursive manner by processing a sequence of *noisy observations* dependent on the state.

- The Bayesian filter provides a unifying framework for the optimal solution of this problem, at least in a conceptual sense.
- Unfortunately, except in a few special cases, the Bayesian filter is not implementable in practice -- hence the need for approximation.

Bayesian Filter (continued)

State-space Model

1. System (state) Model

$$\mathbf{x}_{t+1} = \mathbf{a}(\mathbf{x}_t) + \mathbf{\omega}_t$$

2. Measurement model

$$\mathbf{y}_t = \mathbf{b}(\mathbf{x}_t) + \mathbf{v}_t$$

where t = discrete time

 $\mathbf{x}_t = \text{state at time } t$

 $y_t = observation at time$

 ω_t = dynamic noise

 v_t = measurement noise

Assumptions:

- Nonlinear functions a(.) and b(.) are known
- Dynamic noise ω_t and measurement noise v_t are statistically independent Gaussian processes of zero mean and known covariance matrices.

Bayesian filter (continued)

Time-update equation:

$$\underbrace{\frac{p(\mathbf{x}_{t}|\mathbf{Y}_{t-1})}_{\text{predictive}}}_{\text{distribution}} = \int_{R} \underbrace{\frac{p(\mathbf{x}_{t}|\mathbf{x}_{t-1})}_{\text{prior}} \underbrace{p(\mathbf{x}_{t-1}|\mathbf{Y}_{t-1})}_{\text{old}} \underbrace{distribution}_{\text{posterior}} \underbrace{1}_{\text{distribution}}$$

where R^n denotes the n-dimensional state space.

Measurement-update equation:

$$\underbrace{p(\mathbf{x}_t | \mathbf{Y}_t)}_{\substack{\text{Updated posterior distribution}}} = \underbrace{\frac{1}{Z_t}}_{\substack{t \in \mathcal{X}_t | \mathbf{Y}_{t-1} \\ \text{Predictive distribution}}} \underbrace{p(\mathbf{x}_t | \mathbf{Y}_{t-1}) l(\mathbf{y}_t | \mathbf{x}_t)}_{\substack{\text{Likelihood function} \\ \text{function}}}$$

where Z_t is the normalizing constant defined by

$$Z_{t} = \int_{R} p(\mathbf{x}_{t} | \mathbf{Y}_{t-1}) l(\mathbf{y}_{t} | \mathbf{x}_{t}) d\mathbf{x}_{t}$$

Bayesian Filter (continued)

- The celebrated Kalman filter is a special case of the Bayesian filter, assuming that the dynamic system is linear.
- Except for this special case and couple of other cases, exact computation of the predictive distribution $p(\mathbf{x}_t | \mathbf{Y}_{t-1})$ is not feasible.
- We therefore have to abandon optimality and be content with a sub-optimal nonlinear filtering algorithm that is computationally tractable.

Bayesian Filtering (continued)

Two Approaches for Approximate Nonlinear Filtering

- 1. Direct numerical approximation of the posterior in a local sense:
 - Extended Kalman filter
 - Unscented Kalman filter (Julier, Ulhmann and Durrant-Whyte, 2000)
 - Central-difference Kalman filter (Nörgaard, Poulson, and Ravn, 2000).
 - Cubature Kalman filter (Arasaratnam and Haykin, 2008).
- 2. Indirect numerical approximation of the posterior in a global sense:
 - Particle filters (Gordon, Salmond, and Smith, 1993)
 - Roots embedded in Monte Carlo simulation
 - Computationally demanding

Extended Kalman Filter

• Linearize the system model around the filtered estimate $\hat{\mathbf{x}}_{t|t}$, and linearize the measurement model around the predicted estimate $\hat{\mathbf{x}}_{t|t-1}$

- Attributes and Limitations
 - (i) The EKF is simple to implement
 - (ii) Estimation accuracy of the EKF is good for nonlinearities of a mild sort; otherwise, it is often highly suboptimal.

7. The Cubature Kalman Filter

(Arasaratnam and Haykin, IEEE Trans. Automatic Control, accepted for publication subject to revisions)

• At the heart of the Bayesian filter, we have to compute integrals whose integrand is expressed in the form

(Nonlinear function) x (Gaussian function)

- The challenge is to numerically approximate the integral so as to completely preserve second-order information about the state x that is contained in the sequence of observations
- The computational tool that accommodates this requirement is the *cubature rule* (Cools, 1997).

Cubature Kalman Filter (continued)

The Cubature Rule

• In mathematical terms, we have to compute an integral for the generic form

$$h(\mathbf{f}) = \int_{R} \mathbf{f}(\mathbf{x}) \exp\left(-\frac{1}{2}\mathbf{x}^T \mathbf{x}\right) d\mathbf{x}$$
Arbitray Normalized nonlinear Gaussian function of zero mean and unit covariance function

(1)

• To do the computation, the key step is to make a change of variables from the Cartesian coordinate system (in which the vector x is defined) to a spherical-radial coordinate system:

$$x = rz$$
 subject to $z^Tz = 1$ and $x^Tx = r^2$

where
$$0 \le r < \infty$$

Cubature Kalman Filter (continued)

• We may thus express I as the radial integral

$$I = \int_0^\infty S(r) r^{n-1} \exp(-r^2) dr$$

where S(r) is defined by the spherical integral

$$S(r) = \int_{U_n} f(r\mathbf{z}) d\mathbf{\sigma}(\mathbf{z})$$

where $\sigma(.)$ is the spherical surface measure on the region

$$U_n = \{\mathbf{z}, \text{ subject to } \mathbf{z}^T \mathbf{z} = 1\}$$

• Working through a fair amount of mathematical details, we finally arrive at the desired *linear approximation*:

$$h(f) = \int_{R^{n}} \mathbf{f}(\mathbf{x}) \underbrace{N(\mathbf{x}; \mathbf{0}, \mathbf{I})}_{\text{Standard Gaussian function}} d\mathbf{x}$$

$$\approx \sum_{i=1}^{n} \mathbf{m}_{i} \mathbf{f}\{\xi_{i}\}$$

where $\{\xi_i\}$ = cubature representations of the state vector x.

$$\omega_i = \frac{1}{m}, \quad i = 1, 2, ..., m = 2n$$

• The set $\left\{\xi_i,\omega_i\right\}^{2n}$ constitutes the cubature points used to numerically compute integrals of the form defined in Eq. (1).

Parameter Updates of the Cubature Kalman Filter

Time update

$$\hat{\mathbf{x}}_{n|n-1} = \mathbf{E}[\mathbf{x}_n | \mathbf{Y}_{n-1}]$$

$$= \int_{R^{M}} \mathbf{a}(x_{n-1}) N(\mathbf{x}_{n-1}; \hat{\mathbf{x}}_{n-1|n-1}, \mathbf{P}_{n-1|n-1}) d\mathbf{x}_{n-1}$$
Nonlinear state Gaussian distribution function

Measurement update

$$N \underbrace{ \begin{bmatrix} \mathbf{x}_{n} \\ \mathbf{y}_{n} \end{bmatrix}}_{\text{Joint}}, \underbrace{ \begin{bmatrix} \hat{\mathbf{x}}_{n|n-1} \\ \hat{\mathbf{y}}_{n|n-1} \end{bmatrix}}_{\text{Joint}}, \underbrace{ \begin{bmatrix} \mathbf{P}_{n|n-1} & \mathbf{P}_{xy, \, n|n-1} \\ \mathbf{P}_{yx, \, n|n-1} & \mathbf{P}_{yy, \, n|n-1} \end{bmatrix}}_{\text{Joint variables}}_{\text{mean}}$$

$$\hat{\mathbf{y}}_{n|n-1} = \int_{R^{M}} \underbrace{\mathbf{b}(\mathbf{x}_{n}) N(\mathbf{x}_{n}; \hat{\mathbf{x}}_{n|n-1}, \mathbf{P}_{n|n-1})}_{\text{Nonlinear measurement function}} Gaussian function$$

$$P_{yy, n|n-1} = \int_{\mathbb{R}^{M}} \underbrace{\mathbf{b}(\mathbf{x}_{n})\mathbf{b}^{T}(\mathbf{x}_{n})}_{\text{Outer product of nonlinear measurement function}}_{\text{of nonlinear measurement function}} \underbrace{\mathbf{b}(\mathbf{x}_{n})\mathbf{b}^{T}(\mathbf{x}_{n})}_{\text{Outer product of the estimate } \hat{\mathbf{y}}_{n|n-1}}_{\text{Outer product of the estimate } \hat{\mathbf{y}}_{n|n-1}}_{\text{onlinear measurement function}} \underbrace{\mathbf{covariance matrix}}_{\text{measurement noise}}$$

$$\begin{aligned} \mathbf{P}_{xy,\,n|n\text{-}1} &= \mathbf{P}_{yx,\,n|n\text{-}1} \\ &= \int_{R^M} \underbrace{\mathbf{x}_n \mathbf{b}^T(\mathbf{x}_n)}_{\text{Outer}} \underbrace{N(\mathbf{x}_n; \hat{\mathbf{x}}_{n|n\text{-}1}, \mathbf{P}_{n|n\text{-}1})}_{\text{Gaussian function}} d\mathbf{x}_n - \underbrace{\hat{\mathbf{x}}_{n|n\text{-}1} \hat{\mathbf{y}}_{n|n\text{-}1}^T}_{\text{Outer product of the estimates}}_{\text{of the estimates}} \underbrace{\hat{\mathbf{x}}_{n|n\text{-}1} \text{ and } \hat{\mathbf{y}}_{n|n\text{-}1}}_{\hat{\mathbf{y}}_{n|n\text{-}1}} \end{aligned}$$

with itself

Recursive Cycle of the Cubature Kalman Filter

• The Kalman gain is computed as

$$\mathbf{G}_n = \mathbf{P}_{xy, n|n-1} \mathbf{P}_{yy, n|n-1}^{-1}$$

where $P_{yy,n|n-1}^{-1}$ is the inverse of the covariance matrix

$$\mathbf{P}_{yy,n|n-1}^{-1}.$$

• Upon receiving the new observation y_n , the filtered estimate of the state x_n is computed in accordance with the predictor-corrector formula:

• Correspondingly, the covariance matrix of the filtered state estimation error is computed as shown by

$$\mathbf{P}_{n|n} = \mathbf{P}_{n|n-1} - \mathbf{G}_n \mathbf{P}_{yy, n|n-1} \mathbf{G}_n^T$$

Updated posterior distribution

$$p(\mathbf{x}_n|\mathbf{Y}_n) = N(\mathbf{x}_n; \hat{\mathbf{x}}_{n|n}, \mathbf{P}_{n|n})$$

Properties of the Cubature Kalman Filter

Property 1: The cubature Kalman filter (CKF) is a derivativefree on-line sequential-state estimator.

Property 2: Approximations of the moment integrals are all *linear* in the number of function evaluations.

Property 3: Computational complexity of the cubature Kalman filter grows as n^3 , where n is the dimensionality of the state space.

Property 4: The cubature Kalman filter completely preserves second-order information about the state that is contained in the observations.

Property 5: The cubature Kalman filter inherits properties of the linear Kalman filter, including square-root filtering for improved accuracy and reliability.

Property 6: The cubature Kalman filter is the closest known direct approximation to the Bayesian filter, outperforming the extended Kalman filter and the central-difference Kalman filter:

It eases the curse-of-dimensionality problem but, by itself, does not overcome it.

Computer Experiment: Pattern Classification

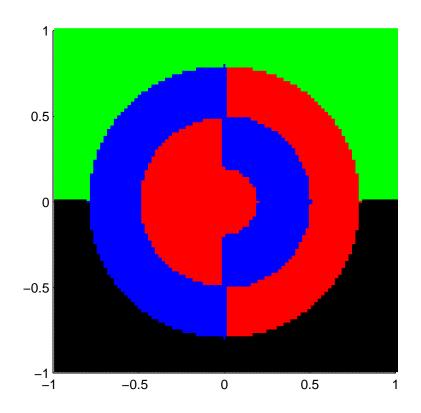


Figure 3: True classification regions

Supervised Learning

Training sample: $\{\mathbf{u}_t, \mathbf{d}_t\}$

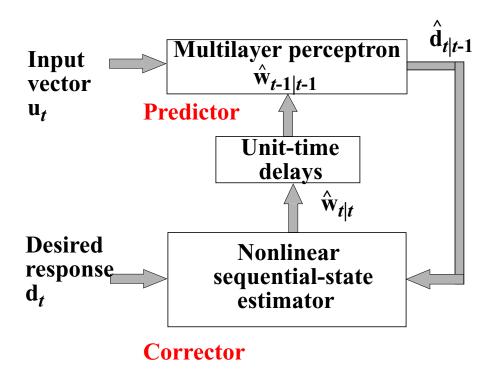


Figure 4: Block diagram of supervised learning machinery

Experimental Setup

• Used a 2-5-5-4 FFNN with softmax output nonlinearity and the mean squared-error criterion.

Total number of adjustable weights: 55 plus biases

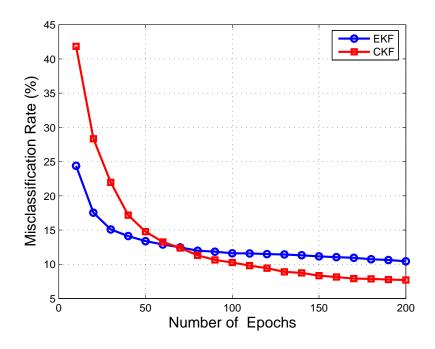
- 1000 training examples drawn randomly from the square region.
- DSSM:

Process equation: $\mathbf{w}_t = \mathbf{w}_{t-1} + \mathbf{\omega}_t$

Measurement equation: $y_t = b(w_t, x_t) + v_t$

- Two training algorithms: EKF, and square-root Kalman filter (SCKF).
- To check robustness of filters, 10% of the training examples were mislabeled.

Performance Comparison



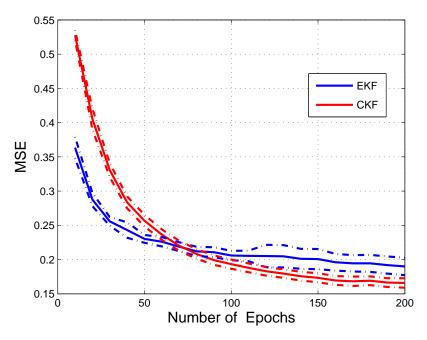


Figure 5:

9. On-going Research Projects in My Laboratory

(i) Cubature Kalman Filter:

• Large-scale system applications involving pattern recognition and approximate dynamic programming.

(ii) Cognitive Radio Networks:

- Spectrum sensing
- Robust transmit power control
- Dynamic spectrum management
- Emergent behaviour

(iii) Cognitive Radar Networks:

• Sub-optimal control of inexpensive (surveillance) radar sensors, given limited computational resources

(iv) Cocktail Party Processor:

• Computational auditory scene analysis

10. Concluding Remark

"Cognitive Dynamic Systems"

are

A Way of the Future

in

The 21st Century

Acknowledgements

- Many thanks to my gifted group of outstanding Ph.D. students
- Deep gratitude to the Natural Sciences and Engineering Research Council (NSERC) of Canada for continued financial support

The new Website

http://soma.mcmaster.ca

Cognitive Dynamic Systems Workshop, Niagara-on-the-Lake, May 2008, is available and slides can be downloaded from the following link

http://soma.mcmaster.ca/cds2008.php