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1. Introductory Remarks

“Optimality versus Robustness”

In many applications, global optimality may not be practically feasible:

 Large-scale nature of the problem
e Infeasible computability
e  Curse-of-dimensionality

Hence, the practical requirement of having to settle for a sub-optimal
solution of the system design

 Trade-off global optimality for computational tractability and robust
behaviour.
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Criterion for sub-optimality
DO AS BEST AS YOU CAN, AND NOT MORE

e This statement is the essence of what the human brain does on a
daily basis:

Provide the “best” solution in the most reliable

fashion for the task at hand, given limited resources.

e Key question: How do we define “best”?
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2. The Bayesian Filter: A powertful tool for
solving the nonlinear tracking problem

Problem statement:

Given a nonlinear dynamic system, estimate the hidden state of the
system in a recursive manner by processing a sequence of noisy
observations dependent on the state.

 The Bayesian filter provides a unifying framework for the optimal
solution of this problem, at least in a conceptual sense.

Unfortunately, except in a few special cases, the Bayesian filter is not
implementable in practice -- hence the need for approximation.
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Bayesian Filter (continued)
State-space Model

1. System (state) Model

X = a(xt)+oo

t+1 4

2. Measurement model

¥, = bx)+v,

where ¢ = discrete time
X; =state at time ¢

y; = observation at time ¢
w; =dynamic noise

v, = measurement noise
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Bayesian Filter (continued)

Assumptions:

e Nonlinear functions a(.) and b(.) are known

* Dynamic noise (), and measurement noise v, are statistically

independent Gaussian processes of zero mean and known
covariance matrices.
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Bayesian filter (continued)

1. Time-update equation:

P,V ) =1 POy X )P | Y )dx,
n — - - "1 -
Predictive R Prior Old
distribution distribution posterior
distribution

where R" denotes the n-dimensional state space.

2. Measurement-update equation:

1
x.|Y, = = p(x. Y, {)I(y.|x
p( t t) Zt p( t f—l) (yt t)
Updated Predictive Likelihood
posterior distribution function
distribution

where Z, is the normalizing constant defined by

Z, = | np(xt‘Yt-l)l(yt‘Xt)dxt
R
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Bayesian Filter (continued)

e The celebrated Kalman filter is a special case of the Bayesian
filter, assuming that the dynamic system is linear and both the
dynamic noise and measurement noise are statistically
independent processes.

 Except for this special case and couple of other cases, exact
computation of the predictive distribution p(Xt|Yt-1) is not
feasible.

*  We therefore have to abandon optimality and be content with a
sub-optimal nonlinear filtering algorithm that is
computationally tractable.
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Bayesian Filtering (continued)
Two Approaches for Approximate Nonlinear Filtering

1. Direct numerical approximation of the posterior in a local
sense:
e Extended Kalman filter (simple and therefore widely used)
e Unscented Kalman filter (heuristic in its formulation)
 C(Central-difference Kalman filter
e (Cubature Kalman filter (New)

2. Indirect numerical approximation of the posterior in a global
sense:
e Particle filters:
Roots embedded in Monte Carlo simulation
Computationally demanding
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3. The Cubature Kalman Filter

(Arasaratnam and Haykin, IEEE Trans. Automatic Control, to appear in
2009, June.

At the heart of the Bayesian filter, we have to compute integrals
whose integrands are expressed in the common form

(Nonlinear function) X (Gaussian function)

e The challenge is to numerically approximate the integral so as to
completely preserve second-order information about the state x; that

is contained in the sequence of observations y;

e The computational tool that accommodates this requirement is the
cubature rule.
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Cubature Kalman Filter (continued)
The Cubature Rule

 In mathematical terms, we have to compute an integral of the
generic form

h(f) = | f(x)eXpD—Ex x%dx 1)

R e~ ~—
Arbitray Normalized
nonlinear Gaussian
function  function of zero mean and
unit covariance matrix

e To do the computation, a key step is to make a change of variables from the
Cartesian coordinate system (in which the vector x is defined) to a spherical-
radial coordinate system:

Tz=1andex=r2WhereO§r< 00

X = rz subject to z
e  The next step is to apply the radial rule using the Gaussian quadrature.
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Properties of the Cubature Kalman Filter

Property 1: The cubature Kalman filter (CKF) is a derivative-free on-line sequential-state
estimator: It relies on integration for its operation.

Property 2: Approximations of the moment integrals are all /inear in the number of
function evaluations.

Property 3: Computational complexity of the cubature Kalman filter as a whole, grows as
n3, where n is the dimensionality of the state space.

Property 4: The cubature Kalman filter completely preserves second-order information
about the state that is contained in the observations.

Property 5: The cubature Kalman filter inherits properties of the linear Kalman filter,
including square-root filtering for improved accuracy and reliability.

Property 6: The cubature Kalman filter is the closest known direct approximation to the
Bayesian filter, outperforming the extended Kalman filter and the central-difference
Kalman filter:
It eases the curse-of-dimensionality problem
but, by itself, does not overcome it.
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4. Example Application: Tracking a
Manoeuvring Ship

Problem statement:

Track a ship moving in an area bounded by a shore line, assumed
to be a circular disc of known radius and centered at the origin.

 The ship’s motion is modelled by a constant velocity perturbed by additive
white Gaussian noise.

*  When the ship tries to drift outside the shoreline, a gentle turning force
pushes it back towards the origin.

e  The model is interesting in that it exhibits a nonlinear behavior near the

shoreline, thereby providing a good test for assessing the performance of
different nonlinear filters.
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Tracking a Manoeuvring Ship

*  Dynamic State-space Model:
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Tracking (continued)

e Used Euler method with 5 steps b/w each measurement interval to
numerically integrate (1)

J Data:

Radius of the disk-shape shore, r =5 units

Gaussian process noise intensity, Q = 0.01

Gaussian measurement noise parameters, 0, = 0.01 and oy = 01_3(7;

Estimated initial state, 320'0 = [1111] " and covariance, P0|0 = 1014

Radar scans = 1000/Monte Carlo run

50 independent Monte Carlo runs
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Motion of the ship.

Figure 1: I - initial point, F - final point, [1 - Radar location
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Performance Comparison

RMSE

300 400 500 600 700 800
Time, k

RMSE in position

Figure 2: dashed red- PF (1000 particles), thin blue- CDKF, dark black- CKF
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Performance Comparison (continued)

300 400 500 600 700 800
Time, k

RMSE in velocity

Figure 3: dashed red- PF (1000 particles), thin blue- CDKF, dark black- CKF
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5. Concluding Remarks

The results presented on the tracking of a manoeuvring ship, with
constraints imposed on its motion, demonstrate the following:

1. Both the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) fail when tested in a highly nonlinear
environment.

2. The cubature Kalman filter (CKF) outperforms the central
difference Kalman filter (CDKF) and particle filter (PF).
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Simply stated:

e The cubature Kalman filter and its square-root extension
provide a new set of powerful tools for solving nonlinear state-
estimation tracking problems.

e Cubature Kalman filters provide the closest approximation to a
Bayesian filter, which is optimal (the best we can do), at least in
a conceptual sense.
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