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1. Introductory Remarks

“Optimality versus Robustn

In many applications, global optimality may not be pra

• Large-scale nature of the problem
• Infeasible computability
• Curse-of-dimensionality

Hence, the practical requirement of having to settle
solution of the system design

• Trade-off global optimality for computational tracta
behaviour.
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Criterion for sub-optimality

DO AS BEST AS YOU CAN, AND NOT MOR

• This statement is the essence of what the human
daily basis:

Provide the “best” solution in the most relia
fashion for the task at hand, given limited r

• Key question: How do we define “best”?
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2. The Bayesian Filter: A powerfu
solving the nonlinear tracking 

Problem statement:

Given a nonlinear dynamic system, estimate the h
system in a recursive manner by processing a sequ
observations dependent on the state.

• The Bayesian filter provides a unifying framework 
solution of this problem, at least in a conceptual sen

Unfortunately, except in a few special cases, the Bay
implementable in practice -- hence the need for app
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Bayesian Filter (continued)

State-space Model

1. System (state) Model

2. Measurement model

where t = discrete time
xt = state at time t
yt = observation at time t
ωt = dynamic noise

= measurement noise

xt 1+ a xt( ) ωt+=

yt b xt( ) νt+=

νt
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Bayesian Filter (continued)

Assumptions:

• Nonlinear functions  and  are known

• Dynamic noise ωt and measurement noise  are

independent Gaussian processes of zero mean a
covariance matrices.

a .( ) b .( )

νt
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Bayesian filter (continued)

1. Time-update equation:

where Rn denotes the n-dimensional state space.

2. Measurement-update equation:

where Zt is the normalizing constant defined by

p xt Yt-1( ) p xt xt-1( ) p xt-1 Yt-1( ) xt-1d

R
n

∫={ {

                            Prior                   Old

                            distribution            posterior
                                                           distribution

{
Predictive
distribution

p xt Yt( ) 1
Zt
----- p xt Yt-1( )l yt xt( )=

Updated                                         Predictive                Likelihood
posterior                                        distribution             function
distribution

{ { {
Zt p xt Yt-1( )l yt xt( ) xtd

R
n

∫=
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Bayesian Filter (continued)

• The celebrated Kalman filter is a special case o
filter, assuming that the dynamic system is linea
dynamic noise and measurement noise are stati
independent processes.

• Except for this special case and couple of other 
computation of the predictive distribution
feasible.

• We therefore have to abandon optimality and b
sub-optimal nonlinear filtering algorithm that i
computationally tractable.

p x(
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Bayesian Filtering (continued)

Two Approaches for Approximate Nonlinear Filter

1. Direct numerical approximation of the posterio
sense:
• Extended Kalman filter (simple and therefo
• Unscented Kalman filter (heuristic in its for
• Central-difference Kalman filter
• Cubature Kalman filter (New)

2. Indirect numerical approximation of the poster
sense:
• Particle filters:

Roots embedded in Monte Carlo simulation
Computationally demanding
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3. The Cubature Kalman Filter

(Arasaratnam and Haykin, IEEE Trans. Automatic Con
2009, June.

• At the heart of the Bayesian filter, we have to compu
whose integrands are expressed in the common form

(Nonlinear function) x (Gaussian functio

• The challenge is to numerically approximate the int
completely preserve second-order information abou
is contained in the sequence of observations yt

• The computational tool that accommodates this req
cubature rule.
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Cubature Kalman Filter (continued)

The Cubature Rule

• In mathematical terms, we have to compute an
generic form

• To do the computation, a key step is to make a change of
Cartesian coordinate system (in which the vector x is defi
radial coordinate system:

x = rz subject to zTz = 1 and xTx = r2 where 0 < r < ∞

• The next step is to apply the radial rule using the Gaussian qua

h f( ) f x( ) 1
2
---x

T
x– 

 exp xd
R

n
∫= {

Normalized
Gaussian
function of zero mean and
unit covariance matrix

{

Arbitray
nonlinear
function
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Properties of the Cubature Kalman Filter

Property 1: The cubature Kalman filter (CKF) is a derivative-free o
estimator: It relies on integration for its operation.

Property 2: Approximations of the moment integrals are all line
function evaluations.

Property 3: Computational complexity of the cubature Kalman filte
n3, where n is the dimensionality of the state space.

Property 4: The cubature Kalman filter completely preserves seco
about the state that is contained in the observations.

Property 5: The cubature Kalman filter inherits properties of the
including square-root filtering for improved accuracy and reliability

Property 6: The cubature Kalman filter is the closest known direct
Bayesian filter, outperforming the extended Kalman filter and
Kalman filter:

It eases the curse-of-dimensionality problem
but, by itself, does not overcome it.
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4.   Example Application: Trackin
  Manoeuvring Ship

Problem statement:

Track a ship moving in an area bounded by a shore lin
to be a circular disc of known radius and centered at t

• The ship’s motion is modelled by a constant velocity pert
white Gaussian noise.

• When the ship tries to drift outside the shoreline, a gentl
pushes it back towards the origin.

• The model is interesting in that it exhibits a nonlinear be
shoreline, thereby providing a good test for assessing the
different nonlinear filters.
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Tracking a Manoeuvring Ship

• Dynamic State-space Model:

• where

ẋt ξ̇ tη̇ f 1 xt( ) f 2 xt( )[ ]
T

Qtβt+=

rk

θk 
 
 

ξk
2 ηk

2
+

ηk

ξk
------ 

 
1–

tan 
 
 
 
 

wk+=

f 1 x( )
Kξ–

ξ2 η2
+

----------------------, ξ2 η2
+ r and ξξ̇ ηη̇ 0;≥+≥

0, otherwise





=

f 2 x( )
Kη–

ξ2 η2
+

----------------------, ξ2 η2
+ r and ξξ̇ ηη̇ 0;≥+≥

0, otherwise





=
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Tracking (continued)

• Used Euler method with 5 steps b/w each measurement i
numerically integrate (1)

• Data:

- Radius of the disk-shape shore, r = 5 units

- Gaussian process noise intensity, Q = 0.01

- Gaussian measurement noise parameters, σr = 0.01 an

- Estimated initial state,  and covariance,

- Radar scans = 1000/Monte Carlo run

- 50 independent Monte Carlo runs

x̂0 0 1111[ ] T
=
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Motion of the ship.

Figure 1: I - initial point, F - final point, ★  - Radar location
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Performance Comparison

Figure 2: dashed red- PF (1000 particles), thin blue- CDKF, d
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Performance Comparison (continued)

Figure 3: dashed red- PF (1000 particles), thin blue- CDKF, d
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5.   Concluding Remarks

The results presented on the tracking of a manoeuv
constraints imposed on its motion, demonstrate the

1. Both the extended Kalman filter (EKF) and the
Kalman filter (UKF) fail when tested in a highl
environment.

2. The cubature Kalman filter (CKF) outperform
difference Kalman filter (CDKF) and particle fi
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Simply stated:

• The cubature Kalman filter and its square-root
provide a new set of powerful tools for solving n
estimation tracking problems.

• Cubature Kalman filters provide the closest app
Bayesian filter, which is optimal (the best we ca
a conceptual sense.
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