Cubature Kalman Filters

Simon Haykin McMaster, University Hamilton, Ontario, Canada

email: haykin@mcmaster.ca Web site: http://soma.mcmaster.ca

Outline of The Lecture

- 1. Introductory Remarks
- 2. The Bayesian Filter: A powerful tool for solving the nonlinear filtering problem
- 3. The Cubature Kalman Filter
- 4. Example Application: Tracking a manoeuvring ship
- 5. Concluding Remarks
 - Reference

1. Introductory Remarks

"Optimality versus Robustness"

In many applications, global optimality may not be practically feasible:

- Large-scale nature of the problem
- Infeasible computability
- Curse-of-dimensionality

Hence, the practical requirement of having to settle for a sub-optimal solution of the system design

• Trade-off global optimality for computational tractability and robust behaviour.

Criterion for sub-optimality

DO AS BEST AS YOU CAN, AND NOT MORE

• This statement is the essence of what the human brain does on a daily basis:

Provide the "best" solution in the most reliable fashion for the task at hand, given limited resources.

• Key question: How do we define "best"?

2. The Bayesian Filter: A powerful tool for solving the nonlinear tracking problem

Problem statement:

Given a nonlinear dynamic system, estimate the *hidden state* of the system in a recursive manner by processing a sequence of *noisy observations* dependent on the state.

• The Bayesian filter provides a **unifying framework** for the optimal solution of this problem, at least in a conceptual sense.

Unfortunately, except in a few special cases, the Bayesian filter is **not** implementable in practice -- hence the need for **approximation**.

Bayesian Filter (continued)

State-space Model

1. System (state) Model

 $\mathbf{x}_{t+1} = \mathbf{a}(\mathbf{x}_t) + \boldsymbol{\omega}_t$

2. Measurement model

 $\mathbf{y}_t = \mathbf{b}(\mathbf{x}_t) + \mathbf{v}_t$

where t = discrete time $\mathbf{x}_t = \text{state at time } t$ $\mathbf{y}_t = \text{observation at time } t$ $\omega_t = \text{dynamic noise}$ $v_t = \text{measurement noise}$

Bayesian Filter (continued)

Assumptions:

- Nonlinear functions $a(\cdot)$ and $b(\cdot)$ are known
- Dynamic noise ω_t and measurement noise v_t are statistically independent Gaussian processes of zero mean and known covariance matrices.

Bayesian filter (continued)

1. Time-update equation:

where R^n denotes the *n*-dimensional state space.

2. Measurement-update equation:

$$\underbrace{p(\mathbf{x}_t | \mathbf{Y}_t)}_{t} = \frac{1}{Z_t} \underbrace{p(\mathbf{x}_t | \mathbf{Y}_{t-1})l(\mathbf{y}_t | \mathbf{x}_t)}_{t-1}$$

Updated posterior distribution

Predictive distribution

Likelihood function

where Z_t is the normalizing constant defined by

$$Z_t = \int_{R^n} p(\mathbf{x}_t | \mathbf{Y}_{t-1}) l(\mathbf{y}_t | \mathbf{x}_t) d\mathbf{x}_t$$

Bayesian Filter (continued)

- The celebrated Kalman filter is a special case of the Bayesian filter, assuming that the dynamic system is linear and both the dynamic noise and measurement noise are statistically independent processes.
- Except for this special case and couple of other cases, exact computation of the predictive distribution $p(\mathbf{x}_t | \mathbf{Y}_{t-1})$ is not feasible.
- We therefore have to abandon optimality and be content with a sub-optimal nonlinear filtering algorithm that is computationally tractable.

Bayesian Filtering (continued)

Two Approaches for Approximate Nonlinear Filtering

- 1. Direct numerical approximation of the posterior in a local sense:
 - Extended Kalman filter (simple and therefore widely used)
 - Unscented Kalman filter (heuristic in its formulation)
 - Central-difference Kalman filter
 - Cubature Kalman filter (New)
- 2. Indirect numerical approximation of the posterior in a global sense:
 - Particle filters: Roots embedded in Monte Carlo simulation Computationally demanding

3. The Cubature Kalman Filter

(Arasaratnam and Haykin, IEEE Trans. Automatic Control, to appear in 2009, June.

• At the heart of the Bayesian filter, we have to compute integrals whose integrands are expressed in the common form

(Nonlinear function) x (Gaussian function)

- The challenge is to numerically approximate the integral so as to completely preserve second-order information about the state x_t that is contained in the sequence of observations y_t
- The computational tool that accommodates this requirement is the *cubature rule*.

Cubature Kalman Filter (continued)

The Cubature Rule

• In mathematical terms, we have to compute an integral of the generic form

$$h(\mathbf{f}) = \int_{R^{n}} \mathbf{f}(\mathbf{x}) \exp\left(-\frac{1}{2}\mathbf{x}^{T}\mathbf{x}\right) d\mathbf{x}$$
(1)

Arbitray

Arbitray

nonlinear

function

function

function of zero mean and

unit covariance matrix

(1)

• To do the computation, a key step is to make a change of variables from the Cartesian coordinate system (in which the vector x is defined) to a spherical-radial coordinate system:

$$\mathbf{x} = r\mathbf{z}$$
 subject to $\mathbf{z}^T\mathbf{z} = \mathbf{1}$ and $\mathbf{x}^T\mathbf{x} = r^2$ where $0 \le r \le \infty$

• The next step is to apply the radial rule using the Gaussian quadrature.

Properties of the Cubature Kalman Filter

Property 1: The cubature Kalman filter (CKF) is a *derivative-free on-line sequential-state estimator*: It relies on integration for its operation.

Property 2: Approximations of the moment integrals are all *linear* in the number of function evaluations.

Property 3: Computational complexity of the cubature Kalman filter as a whole, grows as n^3 , where *n* is the dimensionality of the state space.

Property 4: The cubature Kalman filter completely preserves second-order information about the state that is contained in the observations.

Property 5: The cubature Kalman filter *inherits properties of the linear Kalman filter*, including square-root filtering for improved accuracy and reliability.

Property 6: The cubature Kalman filter is the closest known direct approximation to the Bayesian filter, outperforming the extended Kalman filter and the central-difference Kalman filter:

It eases the curse-of-dimensionality problem but, by itself, does not overcome it.

4. Example Application: Tracking a Manoeuvring Ship

Problem statement:

Track a ship moving in an area bounded by a shore line, assumed to be a circular disc of known radius and centered at the origin.

- The ship's motion is modelled by a constant velocity perturbed by additive white Gaussian noise.
- When the ship tries to drift outside the shoreline, a gentle turning force pushes it back towards the origin.
- The model is interesting in that it exhibits a nonlinear behavior near the shoreline, thereby providing a good test for assessing the performance of different nonlinear filters.

Tracking a Manoeuvring Ship

• Dynamic State-space Model:

$$\dot{\mathbf{x}}_{t} = \left[\dot{\xi}_{t}\dot{\eta}f_{1}(\mathbf{x}_{t})f_{2}(\mathbf{x}_{t})\right]^{T} + \sqrt{\mathbf{Q}_{t}}\boldsymbol{\beta}_{t}$$

$$\begin{pmatrix} r_{k} \\ \boldsymbol{\theta}_{k} \end{pmatrix} = \begin{pmatrix} \sqrt{\xi_{k}^{2} + \eta_{k}^{2}} \\ 1 \\ \tan^{-1}\left(\frac{\eta_{k}}{\xi_{k}}\right) \end{pmatrix} + \mathbf{w}_{k}$$
(1)
(2)

• where

$$f_{1}(\mathbf{x}) = \begin{cases} \frac{-K\xi}{\sqrt{\xi^{2} + \eta^{2}}}, & \sqrt{\xi^{2} + \eta^{2}} \ge r \text{ and } \xi \dot{\xi} + \eta \dot{\eta} \ge 0; \\ 0, & \text{otherwise} \end{cases}$$
$$f_{2}(\mathbf{x}) = \begin{cases} \frac{-K\eta}{\sqrt{\xi^{2} + \eta^{2}}}, & \sqrt{\xi^{2} + \eta^{2}} \ge r \text{ and } \xi \dot{\xi} + \eta \dot{\eta} \ge 0; \\ 0, & \text{otherwise} \end{cases}$$

Tracking (continued)

- Used Euler method with 5 steps b/w each measurement interval to numerically integrate (1)
- Data:
 - Radius of the disk-shape shore, r = 5 units
 - Gaussian process noise intensity, Q = 0.01
 - Gaussian measurement noise parameters, $\sigma_r = 0.01$ and $\sigma_{\theta} = \frac{0.5\pi}{180}$
 - Estimated initial state, $\hat{\mathbf{x}}_{0|0} = [1111]^T$ and covariance, $P_{0|0} = 10I_4$
 - Radar scans = 1000/Monte Carlo run
 - 50 independent Monte Carlo runs

Motion of the ship.

Figure 1: I - initial point, F - final point, ★ - Radar location

Performance Comparison

RMSE in position

Performance Comparison (continued)

Figure 3: dashed red- PF (1000 particles), thin blue- CDKF, dark black- CKF

5. Concluding Remarks

The results presented on the tracking of a manoeuvring ship, with constraints imposed on its motion, demonstrate the following:

1. Both the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) fail when tested in a highly nonlinear environment.

2. The cubature Kalman filter (CKF) outperforms the central difference Kalman filter (CDKF) and particle filter (PF).

Simply stated:

• The cubature Kalman filter and its square-root extension provide a new set of powerful tools for solving nonlinear stateestimation tracking problems.

• Cubature Kalman filters provide the closest approximation to a Bayesian filter, which is optimal (the best we can do), at least in a conceptual sense.

Reference

I. Arasaratnam and s. Haykin, "Cubature Kalman Filters", IEEE Trans. Automatic Control, 2009, June.