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1. Background Behind the Emergence of
Cognitive Dynamic Systems (CDS)
Broad Array of Subjects that have prepared me for my current
research passion: CDS
Signal Processing;
Control Theory;
Adaptive Systems;
Communications;

Radar; and

Neural Information Processing
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Background (continued)

Two Seminal Journal Papers

(1) Simon Haykin, “Cognitive Radio: Brain-empowered
Wireless Communications’, |EEE Journal on Selected
Areas in Communications, Special Issue on Cognitive
Networks, pp. 201-220, February, 2005.

(2) Simon Haykin, “Cognitive Radar: A Way of the Future’,
| EEE Signal Processing Magazine, pp. 30-41, January 2006.
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Background (continued)

Predictive Article®

“I see the emergence of a new discipline, called Cognitive
Dynamic Systems, which builds on ideas in statistical signal
processing, stochastic control, and information theory, and
weaves those well-developed ideas into new ones drawn from
neuroscience, statistical learning theory, and game theory.
The discipline will provide principled tools for the design and
development of a new generation of wireless dynamic sys-
tems exemplified by cognitive radio and cognitive radar with
efficiency, effectiveness, and robustness as the hallmarks of
performance”.

3-Simon Haykin, “ Cognitive Dynamic Systems”, Proc. |EEE, Point of View
article, November 2006.

NIPS Workshops, Whistler, BC, December 2009 (Haykin) 5



2. Cognition
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Figure 1: Information-processing Cyclein Cognitive Radio*
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Figure 3: Graphical representation of perception-action cycle in the Visual Brain,
(D.A. Milner and M.A. Goodale, 2006; J.M. Fuster, 2005)
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3. Highlights of Research into CDS in
my Laboratory

(i) Cognitive Radio

Self-organizing dynamic spectr um management
for cognitive radio networks

The design of a software testbed for demonstrating this novel
DSM strategy (using 5,000 lines of codes) has been completed,
ready for experimentation; the strategy is motivated by
Hebbian learning.
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(i) Cognitive Mobile Assistants
New generation of hand-held biomedical
wireless devices used as aids for memory-
Impaired patients, and other related

applications.
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(111) Cognitive Tracking Radar
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Figure 4. Cognitive infor mation-processing cycle of tracking radar, revisited in light
of the perception-action cyclein the visual brain
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4. Bayesian Filtering for State Estimation
of the Environment (Ho and L ee, 1964)

State-space Model

1. System (state) sub-model
X1 = alxp) vy

2. Measurement sub-model
Y, = b(xp)+v,
where k& = discrete time
X; = state at time &
y; = observable at time &
Wy, = process noise

v, = measurement noise
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Prior Assumptions:

* Nonlinear functions a(.) and b(.) are known, with a(.)
being derived from underlying physics of the dynamic

system under study and b(.) derived from the digital
instrumentation used to obtain measurements.

* Process noise w, and measurement noise v, are statistically

independent Gaussian processes of zero mean and known
covariance matrices.

 Sequence of observations
_ k
Y =V
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Up-date Equations:

1. Time-update:

POg|Yi) = [ O 3 )P0y YDy
Predictive R Prior Old
distribution distribution posterior
distribution

where R” denotes the n-dimensional state space.

2. Measurement-update:

1
P(Xk|Yk = C_k y P(Xk|Yk_1)l(yk|Xk)

Updated Predictive Likelihood
posterior distribution function
distribution

where C is the normalizing constant defined by the integral

Ck = J' p(xk‘Yk-l)l(yk‘Xk)dxk
R
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Notes on the Bayesian Filter

(1) Theposterior fully defines the available information about the state of
the environment, given the sequence of observations.

(i) The Bayesan filter propagates the posteriori (embodying time and
measurement updates for each iteration) acrossthe state-space mode!:

The Bayesian filter is therefore the maximum a posteriori (MAP)
estimator of the state

(1) The celebrated Kalman filter (Kalman, 1960), applicable to a linear
dynamic system in a Gaussian environment, is a special case of the
Bayesian filter.

(iv) If the dynamic system is nonlinear and/or the environment is non-
Gaussian, then it is no longer feasible to obtain closed-form solutions
for theintegralsin thetime- and measurement-updates, in which case:

We have to be content with approximate forms of the Bayesian filter
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5. Cubature Kalman Filters?

Objective

Using numerically rigorous mathematics in nonlinear
estimation theory, approximate the Bayesian filter so as to
completely preserve second-order information about the state
X, that is contained in the sequence of observations Y},

In cubature Kalman filters, this approximation is made directly
and in a local manner.

4. I. Arasaratnam and S. Haykin, “Cubature Kalman filters”, IEEE Trans. Automatic Control, pp.
1254-1269, June 2009.
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Steps involved in deriving the CKF:

In a Gaussian environment, approximating the Bayesian filter

involves computing moment integrals of the form:

h(f) = If(x) exp(—xTx)dx

—

Arbitrary Gaussian
nonlinear function
function

where Xx is the state.
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CKEF Steps (continued)

(i) Cubature rule, which is constructed by forcing the cubature
points to obey symmetry:

Let x =7z with zZ/z=1 for 0 < r <

The Cartesian coordinate system is thus transformed into a
spherical-radial coordinate system, yielding

h = Ioo S(r)rn_1 exp (—rz)dr
0
where

S (7" ) — J. f(l" Z) dG (Z) ’ do(z) is an elemental measure of the spherical surface
n
R

and 7 is the dimension of vector x (state).
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CKEF Steps (continued)

(ii) Spherical rule of third-degree:

2n
I f(rz)do(z)=w S flu].
R i=1

-

21 cubature points resulting
from the generator [u]

where w is a scaling factor.
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CKEF Steps (continued)

(iii) Radial rule, using Gaussian quadrature known to be
efficient for computing integrals in a single dimension,
which yields

[/ Gw)dx= 3w, f(x)

Weighting =1

function
where

w(x) = X' exp (—xz) , 0<x<oandw, = w(x,)

and the integral is in the form of the well-known generalized
Gauss-Laguerre formula.
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Properties of the Cubature Kalman Filter

 Property 1: The cubature Kalman filter (CKF) is a derivative-free on-line
sequential-state estimator, relying on integration from one iteration to the next for
its operation; hence, the CKF has a built-in smoothing capability.

e Property 2: Approximations of the moment integrals in the Bayesian filter are all
linear in the number of function evaluations.

e Property 3: Computational complexity of the cubature Kalman filter grows as n,

where n is the dimensionality of the state.

e Property 4: The cubature Kalman filter completely preserves second-order
information about the state that is contained in the observations; in this sense, it is
the best known information-theoretic approximation to the Bayesian filter.
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Properties of the Cubature Kalman Filter (continued)

* Property 5: Regularization is naturally built into the cubature Kalman filter by
virtue of the fact that the prior in Bayesian filtering is known to play a role
equivalent to regularization.

 Property 6: The cubature Kalman filter inherits well-known properties of the
classical Kalman filter, including square-root filtering for improved accuracy and
reliability.

e Property 7: The CKF eases the curse-of-dimensionality problem, depending on how
nonlinear the filter is:

The less nonlinear the filter is, the higher is the feasible
state-space dimensionality of the filter.

e Property 8: The equally weighted cubature points provide a representation of the
estimator’s statistics (i.e., mean and covariance); computational cost of the CKF
may therefore be reduced by modifying the time-update to propagate the cubature
points.
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Hybrid CKF: Application to Tracking Coordinated Turns’

For a (nearly) coordinated turn in three-dimensional space subject to fairly small noise
modeled by independent Brownian motions, we write the state equation

dx(r) = f(x(2))dt + JQdB(z)
where, in an air-traffic-control environment, the seven-dimensional state of the aircraft

. . : T . . :
X = [E, e, N, N ,Z,Z,(A)] with €,1N andZ denoting positions and € , I andZ

denoting velocities in the x, y and z Cartesian coordinates, respectively; w denotes the turn
rate; the drift function f(X) = [8(—00”), r] , W, &, Z , 0 ,O] T; the noise term
B(z) = Bl (1), B2 (1), ..., B7 (1)] T, involving seven mutually independent

standard Brownian motions, accounts for unpredictable modeling errors due to turbu-
lence, wind force, etc.

> Arasaratnam, s. Haykin, and T. Hurd, Cubature Filtering for Continuous-Discrete Nonlinear
Systems: Theory with an Application to Tracking, submitted to IEEE Trans. Signal Processing.
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- 2 2 2 2
The gain matrix Q = d1ag([0, o0,,0, 07,0, 0'1,0,0'2] ) For the experiment
at hand, a radar was located at the origin and digitally equipped to measure the

range, 7, and azimuth angle, 9, at a measurement sampling interval of 7. Hence, we
write the measurement equation:

7 e

_ [+ W
% D tan lmkD ¢
0 5

. 2 2
where the measurement noise w, ~ \/(0,R) with R = diag ( [ 0,,0 9] )

-3
Data. 0, = 4/0.2; 0, = 7%x10 7; 0. = 50m; 04 = 0.ldeg;
and the true initial state x, = [1000m, Oms™!, 2650m, 150ms™', 200m, Oms™!, o deg/s]”.
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Matlab Codes

The Matlab codes for the discrete-time version of the CKF are
available on the

Website: http://soma.mcmaster.ca
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TheVisual Cortex Revisited:

e In Rao and Ballard (1997), the extended Kalman filter
(EKF) was used to demonstrate that Kalman-like filtering
(1.e., predictive coding) is performed in the visual cortex.

« The EKF rdies on differentiation for its computation,
whereasthe CKF relieson integration.

« Since integration is commonly encountered in neural
computations, it would be revealing to revisit the Rao-
Ballard model using the CKF in place of the EKF.

NIPS Workshops, Whistler, BC, December 2009 (Haykin) 27



6. Feedback Information

(i) Principle of Information Preservation

In designing an information-processing system, regardless of its kind, we
should strive to preserve the information content of observables about the
state of the environment as far as computationally feasible, and exploit the
available information in the most cost-effective manner.

(i) Computation
At the receiver, the CKF computes the predicted state-estimation error
vector.

With information preservation as the goal of cognitive processing, entropy of
this error vector is the natural measure of feedback information delivered to

the transmitter by the receiver.

For Gaussian error vectors, the entropy is equal to one-half the logarithm of
determinent of the error covariance matrix, except for a constant term.
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7. Dynamic Programming and Optimal

Control of the Environment®

Design of the transmitter builds on two basic ideas:

(i) Bellman’s dynamic programming and its approximation.
(ii) Library of linear frequency-modulated (LFM) waveforms with varying
slopes, both positive and negative.

Given the feedback information about the state of the environment that is
delivered by the receiver, an approximate dynamic programming algorithm
(e.g., O-learning, least squares policy iteration) in the transmitter updates
selection of the current LFM waveform so as to reduce the entropy of the
predicted state-error vector.

6. Dimitri Bertsekas, “Dynamic Programming and Optimal Control”, Vol. 1 (2005); and vol. 2(2007),
Athena Scientific.
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8. Summarizing Remarks on the
Cognitive Process

Each cycle of the cognitive process in radar consists of two updates:

(i) Transmitted waveform-update.
By delivering feedback information about state pf the the radar environ-
ment, the receiver reinforces the action of the transmitter by adapting it
to update selection of the transmitted LFM waveform.

(i) Feedback information-update.
The transmitter, in turn, reinforces the action of the receiver so as to
update the entropy of the feedback information, viewed as the cost-to-go
function of the dynamic programming algorithm.

This cycle of joint-reinforcement continues, back and forth, until the radar
achieves its ultimate target objective.
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9. Experiment on Cognitive Tracking Radar for
Demonstrating the Power of Cognitive Process

Object Falling in Space, where the dynamics change as the

object reenters the atmosphere
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Figure 6: RMSE of altitude
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10. Final Remarks

Emboldened by my extensive work done on Cognitive Radio for the
past four years and the exciting experimental results presented in this
lecture on Cognitive Radar, I see breakthroughs in designing new
generation of engineering systems that exploit cognition exemplified
by

e Cognitive radio networks for improved utilization of the
electromagnetic spectrum

e Cognitive mobile assistants for a multitude of biomedical and
social-networking applications

e Cognitive radar systems with significantly improved accuracy,
resolution, reliability, and fast response

 Cognitive energy systems for improved utilization and integration
of different sources of energy
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Final Remarks (continued)
Simply stated:
Cognition is a transformative software technology, which is

applicable to a multitude of engineering systems,
old and new.
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Cognitive Dynamic Systems and Neuroscience

The study of cognitive dynamic systems is motivated by ideas
drawn from cognitive neuroscience, particularly, the visual
brain.

Just as we learn from ideas basic to the human brain, it is my
belief that the study of cognitive dynamic systems (particularly,
cognitive radar) from an engineering perspective may well help
us understand some aspects of the brain.
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Figure 7: Block-diagram representation of processing stages in perceptual tasks

(Adapted from C. Speidemann, Y. Chen, and W.S. Geisler, chapter 29 in

M.S. Gassaniga, editor-in-chief, The Cognitive Neurosciences, 4th Edition, 2009).
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Figure 8: Block-diagram representation of processing stages in radar system
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L ast Note

The complete set of slidesfor thislectureisdownloadable

from our website:

http://soma.mcmaster.ca
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