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1. Background Behind the Eme
Cognitive Dynamic Systems (

Broad Array of Subjects that have prepared me
research passion: CDS

Signal Processing;

Control Theory;

Adaptive Systems;

Communications;

Radar; and

Neural Information Processing
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Background (continued)

Two Seminal Journal Papers

(1) Simon Haykin, “Cognitive Radio: B
Wireless Communications”, IEEE Journ
Areas in Communications, Special Issu
Networks, pp. 201-220, February, 2005.

(2) Simon Haykin, “Cognitive Radar: A Way
IEEE Signal Processing Magazine, pp. 30-4
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Background (continued)

Predictive Article3

“I see the emergence of a new discipline, calle
Dynamic Systems, which builds on ideas in s
processing, stochastic control, and informati
weaves those well-developed ideas into new o
neuroscience, statistical learning theory, and
The discipline will provide principled tools fo
development of a new generation of wireless 
tems exemplified by cognitive radio and cogn
efficiency, effectiveness, and robustness as th
performance”.

3.Simon Haykin, “Cognitive Dynamic Systems”, Proc. IEEE
article, November 2006.
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2. Cognition

Figure 1: Information-processing Cycle in Cognitive Radio1
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Figure 2: Block diagram of cognitive radar viewed as a dynam

feedback system2
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Figure 3: Graphical representation of perception-action cycle i

(D.A. Milner and M.A. Goodale, 2006; J.M. Fuster, 2005)
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3. Highlights of Research into C
my Laboratory

(i) Cognitive Radio

Self-organizing dynamic spectrum managemen

for cognitive radio networks

The design of a software testbed for demonstr
DSM strategy (using 5,000 lines of codes) has
ready for experimentation; the strategy is
Hebbian learning.
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(ii) Cognitive Mobile Assistants

New generation of hand-held biom

wireless devices used as aids for me

impaired patients, and other r

applications.
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(iii)  Cognitive Tracking Radar

Figure 4: Cognitive information-processing cycle of tracking ra
of the perception-action cycle in the visual brain

he n ironment 

Pe
(S

ction
(Control)

Feedback Channel F       Entropy
computer

Action:
 Transmit-
  waveform
  controller

Perc
 State
  envi
  estim

The Radar Environment

Information on
predicted state-
estimation error vector

Transmitted
Waveform

Transmitter



12

tion
964)
NIPS Workshops, Whistler, BC, December 2009 (Haykin)

4. Bayesian Filtering for State Estima
 of the Environment (Ho and Lee, 1

State-space Model

1. System (state) sub-model

2. Measurement sub-model

where k = discrete time
xk = state at time k
yk = observable at time k
ωk = process noise

= measurement noise

xk 1+ a xk( ) ωk+=

yk b xk( ) νk+=

νk
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Prior Assumptions:

• Nonlinear functions  and  are know
being derived from underlying physics of th

system under study and  derived from t
instrumentation used to obtain measuremen

• Process noise  and measurement noise  
independent Gaussian processes of zero me
covariance matrices.

• Sequence of observations

a .( ) b .( )

b .( )

ωk νk

Yk yi{ } i=1
k

=
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Up-date Equations:

1. Time-update:

where Rn denotes the n-dimensional state space.

2. Measurement-update:

where Ck is the normalizing constant defined by the integral

p xk Yk -1( ) p xk xk -1( ) p xk -1 Yk -1( ) xk -1d
R

n∫={ {

                            Prior                   Old

                            distribution            posterior
                                                           distribution

{
Predictive
distribution

p xk Yk( ) 1
Ck
------ . p xk Y

k -1
( )l yk xk( )=

Updated                                         Predictive                    Likelihood
posterior                                        distribution                 function
distribution

{ { {
Ck p xk Yk -1( )l yk xk( ) xkd

R
n

∫=
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Notes on the Bayesian Filter

(i) The posterior fully defines the available informatio
the environment, given the sequence of observation

(ii) The Bayesian filter propagates the posteriori (em
measurement updates for each iteration) across the

The Bayesian filter is therefore the maximum a
estimator of the state

(iii) The celebrated Kalman filter (Kalman, 1960), ap
dynamic system in a Gaussian environment, is a
Bayesian filter.

(iv) If the dynamic system is nonlinear and/or the e
Gaussian, then it is no longer feasible to obtain cl
for the integrals in the time- and measurement-upd

We have to be content with approximate forms of th
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5. Cubature Kalman Filters4

Objective

Using numerically rigorous mathematics in non
estimation theory, approximate the Bayesian fil
completely preserve second-order information 
xk that is contained in the sequence of observat

In cubature Kalman filters, this approximation
and in a local manner.

4. I. Arasaratnam and S. Haykin, “Cubature Kalman filters”, IEEE Trans. A

1254-1269, June 2009.
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Steps involved in deriving the CKF:

In a Gaussian environment, approximating th
involves computing moment integrals of the for

where x is the state.

h f( ) f x( ) xT x–( )exp xd∫= { {
Arbitrary
nonlinear
function

Gaussian
function
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CKF Steps (continued)

(i) Cubature rule, which is constructed by forc
points to obey symmetry:

Let x = rz with zTz = 1 for 0 < r < ∞

The Cartesian coordinate system is thus tra
spherical-radial coordinate system, yielding

where

, dσ(z) is an elemental measure of

and n is the dimension of vector x (state).

h S r( )r
n-1

r
2

–( )exp rd
0

∞
∫=

S r( ) f rz( ) σ z( )d
R

n
∫=
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CKF Steps (continued)

(ii) Spherical rule of third-degree:

where w is a scaling factor.

f rz( ) σ z( )d
R

n
∫ w f u[ ] i

i=1

2n

∑≈ {
2n cubature points resulting
from the generator [u]
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CKF Steps (continued)

(iii) Radial rule, using Gaussian quadrature k
efficient for computing integrals in a si
which yields

where

,  and

and the integral is in the form of the well-kn
Gauss-Laguerre formula.

f x( )w x( ) x wi f xi( )
i=1

n

∑≈d∫ {

Weighting
function

w x( ) x
n-1

x
2

–( )exp= 0 x< ∞< w
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Properties of the Cubature Kalman Filter

• Property 1: The cubature Kalman filter (CKF) is a d
sequential-state estimator, relying on integration from one ite
its operation; hence, the CKF has a built-in smoothing capab

• Property 2: Approximations of the moment integrals in the
linear in the number of function evaluations.

• Property 3: Computational complexity of the cubature Kalm
where n is the dimensionality of the state.

• Property 4: The cubature Kalman filter completely p
information about the state that is contained in the observati
the best known information-theoretic approximation to the B
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Properties of the Cubature Kalman Filter (cont

• Property 5: Regularization is naturally built into the cubat
virtue of the fact that the prior in Bayesian filtering is k
equivalent to regularization.

• Property 6: The cubature Kalman filter inherits well-kno
classical Kalman filter, including square-root filtering for im
reliability.

• Property 7: The CKF eases the curse-of-dimensionality probl
nonlinear the filter is:

The less nonlinear the filter is, the higher is the
state-space dimensionality of the filter.

• Property 8: The equally weighted cubature points provide a
estimator’s statistics (i.e., mean and covariance); computat
may therefore be reduced by modifying the time-update to p
points.
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Hybrid CKF: Application to Tracking Coordin

For a (nearly) coordinated turn in three-dimensional space subject
modeled by independent Brownian motions, we write the state equ

where, in an air-traffic-control environment, the seven-dimensiona

with and denoting positi
denoting velocities in the x, y and z Cartesian coordinates, respectiv

rate; the drift function

, involving seven mutu

standard Brownian motions, accounts for unpredictable modeling 
lence, wind force, etc.

5. I. Arasaratnam, s. Haykin, and T. Hurd, Cubature Filtering for Continuous
   Systems: Theory with an Application to Tracking, submitted to IEEE Trans

dx t( ) f x t( )( )dt Qdβ t( )+=

x ε ε̇ η η̇ ζ ,ζ̇ ω, , , , ,[ ]
T

= ε,η ζ

f x( ) ε̇ ωη̇–( ) η̇ ω ε̇ ζ̇ 0, , , , , ,[=

β t( ) β1 t( ) β2 t( ) …,β7 t( ), ,[ ] T=
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.

0m, 0ms-1, ω deg/s]T.

σr
2,σθ

2] )

θ 0.1deg;=
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The gain matrix

at hand, a radar was located at the origin and digitally equippe

range, r, and azimuth angle, , at a measurement sampling int
write the measurement equation:

where the measurement noise wk ~ N (0,R) with

Data.

and the true initial state x0 = [1000m, 0ms-1, 2650m, 150ms-1, 20

Q diag 0 σ1
2,0 σ1

2,0 σ1
2,0,σ2

2,,,[ ]( )=

θ

rk

θk 
 
  εk

2 ηk
2 ζk

2
+ +

ηk

εk
------ 

 1–
tan 

 
 
 
 

wk+=

R diag [(=

σ1 0.2; σ2 7 10 3–
;× σr 50m; σ= = =
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Figure 5: Accumulative RMSE Plots for a fixed sampling interval T = 6s and varying turn rates:
first row, ω = 3 deg/s; second row, ω = 4.5 deg/s; third row, ω = 6 deg/s
(Solid thin with empty circles-EKF, dashed thin with filled squares-UKF, dashed thick-hybrid CK
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Matlab Codes

The Matlab codes for the discrete-time version
available on the

Website: http://soma.mcmaster.c
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The Visual Cortex Revisited:

• In Rao and Ballard (1997), the extended
(EKF) was used to demonstrate that Kalm
(i.e., predictive coding) is performed in the v

• The EKF relies on differentiation for i
whereas the CKF relies on integration.

• Since integration is commonly encount
computations, it would be revealing to r
Ballard model using the CKF in place of the
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6. Feedback Information

(i) Principle of Information Preservation
In designing an information-processing system, regard
should strive to preserve the information content of ob
state of the environment as far as computationally feasi
available information in the most cost-effective manner.

(ii) Computation
At the receiver, the CKF computes the predicted sta
vector.

With information preservation as the goal of cognitive pr
this error vector is the natural measure of feedback infor
the transmitter by the receiver.

For Gaussian error vectors, the entropy is equal to one-h
determinent of the error covariance matrix, except for a 
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7. Dynamic Programming and

Control of the Environment

Design of the transmitter builds on two basic ideas:

(i) Bellman’s dynamic programming and its approxima
(ii) Library of linear frequency-modulated (LFM) wave

slopes, both positive and negative.

Given the feedback information about the state of the
delivered by the receiver, an approximate dynamic prog
(e.g., Q-learning, least squares policy iteration) in the t
selection of the current LFM waveform so as to reduce
predicted state-error vector.

6. Dimitri Bertsekas, “Dynamic Programming and Optimal Control”, Vol. 1 (2
Athena Scientific.
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8. Summarizing Remarks on th
Cognitive Process

Each cycle of the cognitive process in radar consists of tw

(i) Transmitted waveform-update.
By delivering feedback information about state pf th
ment, the receiver reinforces the action of the transm
to update selection of the transmitted LFM waveform

(ii) Feedback information-update.
The transmitter, in turn, reinforces the action of t
update the entropy of the feedback information, view
function of the dynamic programming algorithm.

This cycle of joint-reinforcement continues, back and fo
achieves its ultimate target objective.
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9. Experiment on Cognitive Tracking
Demonstrating the Power of Cogni

Object Falling in Space, where the dynamic
object reenters the atmosphere

Figure 5: RMSFigure 6: RMSE of altitude
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10.  Final Remarks
Emboldened by my extensive work done on Cogni
past four years and the exciting experimental result
lecture on Cognitive Radar, I see breakthroughs
generation of engineering systems that exploit cog
by

• Cognitive radio networks for improved u
electromagnetic spectrum

• Cognitive mobile assistants for a multitude o
social-networking applications

• Cognitive radar systems with significantly im
resolution, reliability, and fast response

• Cognitive energy systems for improved utilizatio
of different sources of energy
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Final Remarks (continued)

Simply stated:

Cognition is a transformative software techn
applicable to a multitude of engineering

old and new.
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Cognitive Dynamic Systems and Neuroscience

The study of cognitive dynamic systems is mo
drawn from cognitive neuroscience, particul
brain.

Just as we learn from ideas basic to the huma
belief that the study of cognitive dynamic syste
cognitive radar) from an engineering perspecti
us understand some aspects of the brain.
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Figure 7: Block-diagram representation of processing stages in
(Adapted from C. Speidemann, Y. Chen, and W.S. Geisler, cha
M.S. Gassaniga, editor-in-chief, The Cognitive Neurosciences, 4
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Figure 8:  Block-diagram representation of processing stages in
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Last Note

The complete set of slides for this lecture is d

from our website:

http://soma.mcmaster.ca


