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What is cognition?

It’s what gets fixed up by recognition



Exemplar-based clustering

Input: A set of real-valued pair-wise similarities 
{s(i,k)} between data points, plus the number 
of exemplars or a real-valued exemplar cost

Output: A subset of exemplar data points and 
an assignment of every other point to an 
exemplar

Objective: Maximize the sum of similarities 
between data points and their exemplars, 
minus the exemplar costs



k-medians clustering
(Lloyd’s/LBG algorithm, facility location, p-median model)



Randomly choose
initial exemplars,
(data centers)

k-medians clustering



Assign data points to
nearest exemplars

k-medians clustering



k-medians clustering

For each cluster,
pick best new
exemplar



k-medians clustering

For each cluster,
pick best new
exemplar



k-medians clustering

Assign data points to
nearest exemplars



Assign data points to
nearest exemplars

k-medians clustering

Convergence:
Final set of
exemplars
(centers)



Example: Vision

Exemplars



Example: Winner-take-all activation



Example: Genomics, HIV vaccine design

Strains of HIV
Selected for vaccine



The facility location generalization
Identify a subset of potential facilities and assign 

users to facilities



Example: Optimal kiosk    location



Why exemplar-based clustering
is an important problem

• Everybody (almost) needs clustering

• User-specified similarities offer increased 
flexibility over statistical models

• The clustering algorithm can be uncoupled 
from the details of how similarities are 
computed

• There is potential for significant improvement 
on existing algorithms

was



How well does k-medians 
clustering work?



Recall solution for toy problem



Optimal solution
(minimizes sum of squared errors)



Squared error achieved by 1 million runs of          
k-medians clustering on 400 Olivetti face images 

Exact solution
(using LP relaxation + 

days of computation)

k-medians clustering, 
one million random 
restarts for each k

Number of clusters, k

Squared 
error



Let’s close the gap!

Source: MSNBC



Affinity Propagation
Science, Feb 16, 2007 and Feb 26, 2008

Joint work with Delbert Dueck

One-sentence summary:

All data points are simultaneously 
considered as exemplars, but exchange 
deterministic messages until a good set 
of exemplars gradually emerges
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Demonstration of affinity propagation
  ITERATION # 1
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Input to affinity propagation

• A set of pair-wise similarities { s(i,k) }:
s(i,k) is a real number indicating how well-
suited data point k is as an exemplar for point i
– Example: s(i,k) = - || xi – xk ||2, i ≠ k

• For each data point k, a real number s(k,k)
indicating the a priori preference that it be 
chosen as an exemplar
– Example: s(k,k) = median {s(i,j)}

Need not 
be metric



An objective function for clustering

• Variables: For data points indexed 1, …, N, cik
indicates whether (cik = 1) or not (cik = 0) point k is 
the exemplar of point i

• ckk = 1 indicates that data point k is an exemplar

• Exact clustering: Find a “valid” configuration of        
c that maximizes Σik cik s(i,k)

– Note that the number of clusters emerges 
automatically, due to the preferences, s(k,k)

– This problem is NP hard (Megiddo & Supowit, 1984)



NetSimilarity(c) =

Σik cik s(i,k) - αΣk (1-ckk)[Σicik > 0]) - α Σi [Σjcij≠1]

Iverson’s notation:
[True]=1, [False]=0

Penalty for 
having a cluster

without an 
exemplar

An objective function for clustering

fk(c1k ,…, cNk)
α ∞

gi(ci1 ,…, ciN)
1-of-N: Penalty 

for a point being 
assigned to 

more than one 
cluster



A factor graph describing NetSimilarity(c)
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Affinity propagation: The loopy max-sum algorithm is 
used to approximately maximize the objective function
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Mini-Tutorial:
Factor Graphs and the sum-product 

algorithm



Representing problems using factor graphs
• Many problems require finding the values of 

variables h that maximize an objective function of 
the form F(h) = Σs fs(hs), or P(h) = Πs ps(hs)
– Example: F(h1,h2,h3) = -(h1-h2)2-(h2-h3)2

f1(h1,h2) = -(h1-h2)2,   f2(h2,h3) = -(h2-h3)2

• A factor graph is a graph with two types of node:
– Each variable node corresponds to a variable in h
– Each function node corresponds to a local function fs() 

or ps(), and is connected to all variables in the 
function’s argument

– Example:

h1 h2 h3



Solving problems using the max-product or 
sum-product algorithm

• Kalman filtering, the Viterbi algorithm 
and dynamic programming can be 
thought of as message-passing in a 
factor graph

• The max-product (or sum-product) 
algorithm exactly maximizes F(h) (or 
marginalizes P(h)) if the factor graph is a 
tree
– Other names: Belief revision or propagation

• Both algorithms are “only” approximate if 
the graph has cycles and messages 
circulate around the graph until 
convergence

h1 h2 h3

h1 h2



Now, back to affinity propagation…



Affinity propagation: The loopy max-sum algorithm is 
used to approximately maximize the objective function

Red messages:
“Responsibilities”
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Affinity propagation: The loopy max-sum algorithm is 
used to approximately maximize the objective function

Green messages:
“Availabilities”
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The simple picture:
Affinity propagation can be viewed as exchanging 

messages between the data points themselves

Sending responsibilities

Candidate
exemplar k

r(i,k)

Data point i

Competing
candidate

exemplar k’

a(i,k’)

Sending availabilities

Candidate
exemplar k

a(i,k)

Data point i

Supporting
data instance i’

r(i’,k)



Sending responsibilities
Candidate
exemplar k

r(i,k)

Data instance i

Competing
candidate

exemplar k’

a(i,k’)

Sending availabilities
Candidate
exemplar k

a(i,k)

Data instance i

Supporting
data instance i’

r(i’,k)

Making decisions:



Message damping

• Unstable dynamics are always avoided in practice by 
damping messages:

r(i,k)* = λ r(i,k) + (1- λ) r(i,k)old

a(i,k)* = λ a(i,k) + (1- λ) a(i,k)old

• Default: λ = 0.9



MATLAB implementation



Squared error achieved by 1 million runs of          
k-medians clustering on 400 Olivetti face images 

Exact solution
(using LP relaxation + 

days of computation)

k-medians clustering, 
one million random 
restarts for each k

Number of clusters, k

Squared 
error



Squared error achieved by affinity propagation on 
400 Olivetti face images 

Exact solution
(using LP relaxation + 

days of computation)

k-medians clustering, 
one million random 
restarts for each k

Number of clusters, k

Squared 
error

Affinity propagation,      
one run, 2 minutes (1000 
times faster than 106 k-

medians runs)



Detecting transcripts (genes) using microarray data
(Data from Frey et al, Nature Genetics 2005, Science 2006)

s(segment i, segment k) = Similarity of expression 
patterns (columns) minus distance between segments 
in the DNA/genome

s(segment i, garbage) = tunable constant

# segments = 76,000 for chromosome 1

Mouse
tissues

DNA activity
Low High

Position in DNA

…

Segment i Segment k



Mouse
tissues

DNA activity
Low High

Position in DNA

…

Segment i Segment k

False positive rate (%)
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A survey of applications investigated by 
other researchers and developers

• VQ codebook design, Jiang et al, 2007 
• Image segmentation, Xiao et al, 2007
• Object classification, Fu et al, 2007
• Finding light sources using images, An et al, 2007
• Microarray analysis, Leone et al, 2007
• Computer network analysis, Code et al, 2007
• Audio-visual data analysis, Zhang et al, 2007
• Protein sequence analysis, Wittkop et al, 2007
• Protein clustering, Lees et al, 2007
• Analysis of cuticular hydrocarbons, Kent et al, 2007 
• …



How competitive is affinity 
propagation?



In the past year…

• Researchers have compared affinity propagation to 
dozens of other clustering algorithms

Two contenders have emerged:
• Linear program relaxation of the binary integer 

program (Charikar et al, 2002):

maxc Σik cik s(i,k)
0 ≤ cik ≤ 1, Σk cik ≤ 1, cik ≤ ckk

• The vertex substitution heuristic, VSH (Hansen & 
Mladenovic, 1997)

Limitation:
Practical for only 
< 500 data points



Error and timing comparison of affinity 
propagation and the VSH

(Results from Brusco & Kohn and Frey & Dueck)

>900 data points



Timing comparison of affinity propagation 
and the VSH on 17,770 Netflix movies



Timing comparison of affinity propagation 
and the VSH on 17,770 Netflix movies



Closing remarks:
Open problems



Relationship to
Dirichlet process mixture models?

(Blei & Jordan, Jain & Neal, Teh & Welling)

• Dirichlet process mixture models use a 
Dirichlet prior on the mixing weights of an 
infinite number of clusters

• Affinity propagation can be viewed as MAP 
inference of a Dirichlet mixture model where 
the means are constrained to be on data 
points and variances are fixed
(Tarlow, Zemel and Frey, to appear at UAI)



Open problem:
Guarantees on solutions



(Weak)



A relevant result?

On the problem of weighted matching on 
graphs, “if the LP relaxation is tight, ie, if the 
unique solution is integral, then the max-sum 
algorithm converges and the resulting estimate 
is the optimal matching”

– Sujay Sanghavi, Dimitry Malioutov, Alan Willsky, 
NIPS 2007



Open problem:
Extensions



Facility location
(Dueck et al, RECOMB 2008)

• Here, potential 
exemplars are 
laid out on a 
fine grid



• Does “generalized belief propagation” (Yedidia
et al; Yuille) produce different results?

• How about tree-reweighted belief 
propagation?

• Extensions to multiple hidden-variables? 



Software, data, and comparisons 
available at

http://www.psi.toronto.edu/affinitypropagation


