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Conventional Wisdom About the Functional
Implications of the Anatomical Hierarchy

It would appear rather straightforward to assume that the
functional organization of the visual system somehow
directly reflects the underlying anatomical hierarchy. In
its extreme form, there are two facets to this assumption.
One is that the visual processing itself is hierarchical,
and the other is that the hierarchy at the functional level
parallels that at the anatomical level.

The notion that visual processing is hierarchical has
been around since before the anatomical hierarchy was elu-
cidated. Marr (1982) was one of the early and influential
proponents of hierarchical processing in vision (Fig. 1C).
He proposed that during the early stages of visual process-
ing, the visual system extracts information about the local
image elements (i.e., the basic “building blocks” or primi-
tives) of the visual scene, such as the local contrast, orien-
tation, and so on, to construct a raw “primal sketch” of the
visual scene. In intermediate stages of processing, the
visual system constructs a representation of object surfaces
(or “2½-D sketch”) using the information about the primi-
tives that was extracted during the previous stage. Finally,
the visual system constructs a full representation of the
visual scene (or “3-D sketch”) by combining the various
elements of the 2½-D sketch. Many modern models also
propose similar processing hierarchies (see Palmer 1999).

Fig. 1. Anatomical and functional hierarchies in the macaque visual system. The human visual system (not shown) is
believed to be roughly similar. A, A schematic summary of the laminar patterns of feed-forward (or ascending) and feed-
back (or descending) connections for visual area V1. The laminar patterns vary somewhat from one visual area to the next.
But in general, the connections are complementary, so that the ascending connections terminate in the granular layer (layer
4) and the descending connections avoid it. The connections are generally reciprocal, in that an area that sends feed-
forward connections to another area also receives feedback connections from it. The visual anatomical hierarchy is defined
based on, among other things, the laminar patterns of these interconnections among the various areas. See text for details.
B, A simplified version of the visual anatomical hierarchy in the macaque monkey. For the complete version, see Felleman
and Van Essen (1991). See text for additional details. AIT = anterior inferotemporal; LGN = lateral geniculate nucleus; 
LIP = lateral intraparietal; MT = middle temporal; MST = medial superior temporal; PIT = posterior inferotemporal; V1 =
visual area 1; V2 = visual area 2; V4 = visual area 4; VIP = ventral intraparietal. C, A model of hierarchical processing of
visual information proposed by David Marr (1982). D, A schematic illustration of the presumed parallels between the
anatomical and functional hierarchies. It is widely presumed not only that visual processing is hierarchical but also that the
anatomical hierarchy provides a substrate for, and therefore parallels, the hierarchical processing.

Table 1. Connectivity of Areas/Regions in a
Hypothetical Visual System

Receives Sends
Cortical Area/ Ascending Ascending
Subcortical Nucleus Input from Output to

A B, D B
B A, F A
C D, G D
D C, E, F, G A, C, E, F
E D, F D, F
F D, E, H B, E, D
G H, I C, D, H
H G, I F, G
I J G, H
J K I
K Retina J

Only the ascending connections are shown. Given these
connectivity data, can you arrange these areas into a hier-
archy? The answer is shown below. Does the hierarchy
remain the same if the input source for K is unknown?
What happens if other inputs and/or outputs are
unknown? (Answer: This data set results in the same hier-
archical structure shown in Figure 1B, with the names of
the visual areas/regions substituted as follows: A = 7a; B =
AIT; C = VIP; D = MST; E = LIP; F = PIT; G = MT; H = V4; 
I = V2; J = V1; K = LGN.)
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Oriented Gabor models of individual simple cells

figure from Daugman, 1990; data from Jones and Palmer, 1987



A theoretical approach
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• Describe computational function: 

What problems does it need to solve?

• Abstract from the details:

Incorporate important constraints.

• Demonstrate performance:

Should be optimal for general images.

• Explain neural data:

Predict from theoretical principles.

• Models are bottom-up;  
theories are top-down.



Make theoretical predictions from the natural environment

natural environment

optimal model:
• properties
• performance

physiological data:

evolution 
(or learning)

?

theory

only compare to the data after optimizing
do not fit the data

Prediction depends on data, 
computational goal, and constraints

Is this possible?
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number of possible algorithms

(fully) functional
visual algorithms

biological 
implementation

How do we find this space?
• theoretical optimality
• computational complexity
• similarity of properties



A wing would be a most mystifying structure
if one did not know that birds flew.

Horace Barlow, 1961

An algorithm is likely to be understood more 
readily by understanding the nature of the 
problem being solved than by examining the 
mechanism in which it is embodied.

David Marr,  1982
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image from Field (1994)

Theory: Efficient coding of natural images

Need to describe all image structure in the scene.

What representation is best?



Principle

Good codes capture the statistical distribution of sensory patterns.

How do we describe the distribution?

•  Goal is to encode the data to desired precision

• A filter bank description:

Describing signals with a simple statistical model

x = !a1s1 + !a2s2 + · · · + !aLsL + !ε

= As + ε

ŝ = A−1x = Wx



Sparse coding

• To learn the optimal codes we optimize two terms:

• In terms of equations:

• Minimizing this expression finds adapts the image features in A to natural images

E = −[preserve information]− λ[sparseness of si]

E = −
∑

n

[xn −Asn]2 −
∑

i

S
(si

σ

)



. . .

. . .
visual input units receptive fields

before
learning

after
learning

nature scene

. . .

Features optimize coding efficiency:
• minimizes redundancy
• maximizes independence

natural scene code image with features image features

Olshausen and Field, 1996



Efficient coding theory predicts V1 receptive fields

V1 receptive fields are not just edge “detectors”:
an optimal code for all natural image structure

!"#"$%&'"()&"*+(,)(-(./(0&1$*"(#"**

2"345"*&06 789-:- ;(<=""1-46(/>>?

a model of the receptive field: 
an oriented Gabor function

Olshausen and Field, 1996

DeAngelis, et al, 1995



Efficient coding selects best of many possible sensory codes

from Lewicki and Olshausen, 1999
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A gap in the theory?
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Robust coding of natural images

• Theory refined:

- image is noisy and blurred

- neural population size changes

- neurons are noisy
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Doi and Lewicki (2005, 2006, 2007) 
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Generalizing the model: sensory noise and optical blur

sensory noise channel noise

observation reconstruction

encoder decoderoptical blur

representationimage

ν δ

Hs ŝAx W r
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Can also add sparseness and resource constraints

only implicit



Traditional codes are not robust

Original

sensory input

encoding neurons



sensory input

encoding neurons

Traditional codes are not robust

Add
noise equivalent
to 1 bit precision

Original reconstruction

sensory input

encoding neurons

1x efficient coding

1 bit precision

(34% error)



How do we learn robust codes?

Objective: 

 
 Find W and A that minimize reconstruction error.

• Channel capacity of the ith neuron: 

• To limit capacity, fix the coefficient signal to noise ratio:
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where det(P) = det(PT ) = 1 and diag(Ω) = (ω1, · · · ,ωN ). Therefore,

ln det(γ2VVT + IN ) =
N∑

k=1

ln(γ2ω2
k + 1). (81)

Using Jensen’s inequality,
N∑

k=1

ln(γ2ω2
k + 1) ≤ N · ln

[
γ2

N

N∑

k=1

ω2
k + 1

]
= N · ln

[
γ2 + 1

]
, (82)

where we used tr(VVT ) = tr(PΩ2PT ) = tr(Ω2) =
∑N

k=1 ω2
k and tr(VVT ) = N (from eq. 8), and the equality holds iff

ω2
k = 1, ∀ k. !

F. etc

(Cost) = (Error) + λ (Var. Const.) (83)

(Var. Const.) =
M∑

i=1

[
ln

(
〈u2

i 〉
σ2

u

)]2

(84)

σ2
u

∆W ∝ − ∂

∂W
(Cost) = 2 AT (IN −AW)Σx − λ

4
M

diag
[
ln{diag(WΣxWT )/c}

diag(WΣxWT )

]
WΣx (85)

A = ΣxWT (σ2
nIM + WΣxWT )−1 (86)

⇔ ∂

∂A
(Cost) = O (87)

SNRi =
〈u2

i 〉
σ2

n

(88)

〈u2
i 〉 = σ2

u (89)

Ci =
1
2

ln(SNRi + 1)

√
λ1 +

√
λ2

2(1 + M
2 SNR)

( √
λ1√
λ2

)
(90)

E =
1

M
N · SNR + 1

1
N

[
N∑

i=1

√
λi

]2

(91)

&E =
∑N

i=1

√
λi

M
N · SNR + 1

1
N





√
λ1
...√
λN



 (92)

λi: i-th eigenvalue of the data.
σ2

x: data variance of 1-D data, or the eigenvalues of isotoropic data.
M : # of coding units (neurons)

diag(〈uuT 〉) = diag(WΣxWT ) = σ2
u1M (93)
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Now robust coding is formulated as a 
constrained optimization problem.
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Sparseness localizes the vectors and increases coding efficiency



Optimal weights match retinal code and response properties

Spatial freq.
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Add
noise equivalent
to 1 bit precision

Original reconstruction
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1x efficient coding

1 bit precision

(34% error)



Robust coding of natural images

Original

sensory input

encoding neurons

Weights adapted for optimal 
robustness

1x robust coding

1 bit precision

reconstruction (3.8% error)



Reconstruction improves by adding neurons

Original reconstruction error: 0.6%8x robust coding

1 bit precision

sensory input

encoding neurons

Weights adapted for optimal 
robustness



Can derive minimum theoretical average error bound

     - ith eigenvalue of the data covariance

 N - input dimensionality

 M - # of coding units (neurons) 
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n
Encoder Decoder

Channel Noise

Data Noisy

Representation

Noiseless

Representation

Reconstruction

Fig. 1. Diagram of the model.

Note that the optimal solution of A and W depends solely on second-order statistics, i.e., the covariance matrix of the data
Σx and the chanel noise variance σ2

n.
We are interested in the system in which the precision of the code is limited, i.e., the representation r has a limited

signal-to-noise ratio (SNR). In order to limit the SNR, we fix the variance of each coding unit,

〈u2
i 〉 = σ2

u, (5)

which yields the same SNR for each unit,

γ2 =
σ2

u

σ2
n

. (6)

As the channel capacity of information is defined by C =
1
2

ln(γ2 + 1) [2], limiting the SNR is equivalent to limiting the
capacity for each unit. We shall call this constraint as channel capacity constraint.

III. OPTIMAL SOLUTIONS AND THEIR CHARACTERISTICS

The goal now is to minimize the MSE (eq. 4) subject to the channel capacity constraint (eq. 5). In this section, we first
analyze the problem in the general case as far as we can, and then we present the optimal solutions in some feasible cases,
namely, for one-dimensional (1-D) and two-dimensional (2-D) data.

First, let us consider how to reflect the channel capacity constraint in the solution. This constraint limits the search space
of W but not A, since W is the parameter that has an influence on σ2

u (cf. eqs. 1 and 2). Therefore, the channel capacity
constraint (eq. 5) is expressed in terms of W as

diag(WΣxWT ) = σ2
u 1M , (7)

where 1M = (1, · · · , 1)T ∈ RM . It takes a convenient form,

diag(VVT ) = 1M (8)

when we define V by a linear transform of W,

V ≡ WES/σu, (9)

where Σx = EDET is the eigenvalue decomposition of the data covariance matrix, S = D
1
2 = diag(

√
λ1, · · · ,

√
λM ), and

λi ≡ Dii are the eigenvalues of Σx. To summarize, the channel capacity constraint is now incorporated in W in such a way
that its linear transform V should have row vectors of unit length.

Next, let us consider a necessary condition for the minimum E , i.e., the first derivative of E should be zero with respect to
all free parameters. Regarding A, ∂E/∂A = O yields (see Appendix A)

A =
1
σu

γ2ES(IN + γ2VT V)−1VT . (10)

(Note that the necessary condition with respect to W (or equivalently, with respect to V) is not as straightforward as this since
W (or V) is constrained to a certain subspace by the channel capacity constraint. We leave this condition as it is for now.)

Using the channel capacity constraint (eq. 9) and the necessary condition with respect to A (eq. 10), the MSE (eq. 4) can
be simplified as (see Appendix B)

E = tr{D · (IN + γ2VT V)−1}. (11)

Finally, the problem is reformulated as finding V that minimizes eq. 11 where V should satisfy the variance constraint (eq.
8).
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encoding/decoding vectors are symmetric about the first principal axis; For M≥3, there are infinitely many configurations of
unit-length connected bars starting from the origin and ending at the optimal Z, and nothing can be added about their regularity.
Interestingly, as γ2/γ2

C is the larger, there is the more flexibility for the Z configuration since the optimal y becomes greater
than M (note that all bars must align to the real axis if y = M ). This is depicted in Fig. 3 from M =3 to M =5 with γ2

2 = 1,
where γ2/γ2

C is increased as M . If γ2 ≤ γ2
c , the optimal Z is M , and the optimal configuration is when all the bars align

straight along the real axis. In this case, encoding/decoding vectors are all parallel to the principal axis (e1), as described by
eqs. 40-41. Such a degenerate code does not exist in the isotropic case.

The optimal solutions for the overcomplete representation are not trivial in the sense that they are in general not given by
the simple replication of the optimal for the lower number of units. For example, under γ2 =1 in Fig. 3, the optimal solution
for M =4 is not identical to the replication of the optimal solution for M =2. More precisely, when we double the number
of codig units (Md = 2×M ), its optimal condition is (from eq. 36)

yd =
√

λ1 −
√

λ2√
λ1 +

√
λ2

(
2
γ2

+ 2×M

)
(43)

&= 2× y (44)

where y is the optimal value for M coding units, implying that the optimal solution for Md = 2×M is not a replication of
the optimal solution for M .

The robust reconstruction for anisotropic 2-D data exploits the correlation of the data, which is implemented via biased
representations towards the first principal axis. For M =1 and for the degenerate case, where only one axis in two dimensional
space is represented, the optimal strategy is to preserve information along the first principal axis at the cost of losing all
information along the minor axis. For the other case (i.e., M ≥ 2 and non-degenerate), it turned out that the data component
along the first principal axis is reconstructed more precisely than that along the minor axis; the error ratio along e1 and e2 is
given by

√
λ2 :

√
λ1 (note the switch of the subscripts; Appendix D). Since

√
λ2 <

√
λ1, the percentage of reconstruction is

greater for the first principal axis. It is illustrated in Fig. 3: the reconstruction ellipse is more flattened than the data ellipse;
if there was no bias, the ellipse for the reconstruction should have been similar to that of the data.

C. Summary of the analysis
We summarize the minimum MSE in Table I. First, it is common in all cases that the minimum MSE is monotonically

decreasing with respect to both the number of coding units M and the SNR in the representation γ2, and they can compensate
for each other (e.g., when the SNR is lowered by half, we can keep the same error level by doubling the number of coding
units). Second, the 1-D solution shares the same form as in the 2-D isotropic case (by noting that the numerator is the data
variance and that the coefficient of γ2 is the overcomplete ratio M/N ). Third, the 2-D anisotropic solution reduces to the 2-D
isotropic solution with λ1 = λ2 (there is no degenerate code in this case). Finally, the degenerate solution in 2-D anisotropic
case has the 1-D solution in its first term, as it boils down to the 1-D problem along the first principal data axis.

TABLE I
SUMMARY OF THE MINIMUM MEAN SQUARED ERROR.

1-D E =
σ2

x

M · SNR + 1

2-D
Isotropic E =

2σ2
x

M
2 · SNR + 1

2-D
Anisotropic E =

1
M
2 · SNR + 1

(
√

λ1 +
√

λ2)2

2
if SNR ≥ SNRc

E =
λ1

M · SNR + 1
+ λ2 if SNR ≤ SNRc

IV. APPLICATION TO IMAGE CODING

In the previous section we characterized the optimal solutions for 1-D and 2-D data. For the higher dimensional data, such
an explicit analysis remains to be investigated. Here, we present numerical solutions for high-dimensional image data and
demonstrate its robustness to channel noise. To derive an optimal solution we can employ a gradient descent method with
respect to the cost function (its details are given in [3], [4]).

Fig. 4 show the performance of our proposed code when applied to a test image. The data consists of 8×8 pixel blocks (i.e.,
N = 64), which are randomly sampled from the 512×512 pixel image. We set the number of coding units as M =64 (where

Balcan, Doi, and Lewicki, 2007;
Balcan and Lewicki, 2007

Results Bound

0.5x 19.9% 20.3%

1x 12.4% 12.5%

8x 2.0% 2.0%

Algorithm achieves theoretical lower bound



retina LGN V1

V2

V4

What are higher-level computational goals?

Learned

Gabor

Wavelet

Fourier

Haar

PCA



grating phase

simple cell

Response of a simple cell to translating grating

(Movshon et al, 1978)



grating phase

complex cell

simple cell

Response of a simple cell to translating grating

(Movshon et al, 1978)



model prediction

grating phase

complex cell

simple cell

(Movshon et al, 1978)

Response of a simple cell to translating grating



V1 cells have many other unexplained properties

(Jones et al, 2002)

surround suppression in V1

optimal 
grating



surround suppression in V1

+ ++

(Jones et al, 2002)
optimal 
grating

V1 cells have many other unexplained properties



+ ++

model 
prediction

V1 cells have many other unexplained properties

optimal 
grating

(Jones et al, 2002)

surround suppression in V1



models for complex cells models for surround effects

(Carandini et al, 2004,2005)

Models of  V1 non-linear responses

What is the functional significance?



retina LGN V1

V2

V4

Higher-level response properties



retina LGN V1

V2

V4

Can we give a functional account?

Higher-level response properties



Perceptual organization in natural scenes

image of Kyoto, Japan from E. Doi



A different representation of a natural scene 
(Kersten and Yuille, 2003)



A representation we’re more familiar with



A representation we’re more familiar with



This is what our brain does



Modern segmentation algorithm using graph cuts

from Sharon et al, 2006

What do we 
know about the 
visual system?



Perceptual generalization in natural scenes



Perceptual generalization in natural scenes





Perceptual generalization in natural scenes



Perceptual generalization in natural scenes

Conjecture:

Two patches are similar if 
they come from the same 

statistical distribution.



Generalization by distribution modeling



Generalization by distribution modeling



Linear representations do not separate the image classes

projection onto the first 2 principal components of the data

. . .

. . .

. . .

. . .
•  bushes

•  hillside

• tree edge

• tree bark



How can we describe the distribution of local regions?



Distributed representations of an image

Can we have a distributed representation of a distribtion?

= s1 φ1 + s2 φ2 + s3 φ3 + s4 φ4 + s5 φ5 + s6 φ6 + · · ·

= s1 φ1 + s2 φ2 + s3 φ3 + s4 φ4 + s5 φ5 + s6 φ6 + · · ·



Distributed representations of image distributions

Points from each distribution will have the same representation 

⇒ model will generalize over local scene region

y1, y2, . . . , yn



Modeling distributions of local scene regions

• model local scene structure, not 
average scene statistics

• model all structure

- want a “complete” code

- a universal “texture” model

• code should be distributed and 
statistically efficient



Modeling distributions of local scene regions



Specific regions have subtle and characteristic correlations



Summarize all pair-wise correlations, ie the covariance



Region shows a characteristic pattern of correlations



Region shows a characteristic pattern of correlations



Region shows a characteristic pattern of correlations



Patterns captured by the covariance matrix

multivariate Gaussian model

neural activity describes the covariance 



A distributed code for covariance matrices

An efficient image code: linear basis:

A basis for covariance matrices?

Represent basis using log covariance:

= s1 φ1 + s2 φ2 + s3 φ3 + s4 φ4 + s5 φ5 + · · ·

log C = y1 A1 + y2 A2 + y3 A3 + y4 A4 + · · ·

C = y1 A1 + y2 A2 + y3 A3 + y4 A4 + · · ·



Distributed representations of image distributions

Points from each distribution will have the same representation 

⇒ model will generalize over local scene region

y1, y2, . . . , yn



Compare to linear basis coding

• code a single image:

• images represented exactly

• no activity ⇒ blank image

• code a single distribution:

• exact image not encoded

• no activity ⇒ “canonical” distribution

p(x|y) = N (0,C)

log C =
∑

j

yjAj

x =
∑

i

siφi

= s1 φ1 + s2 φ2 + · · · log C = y1 A1 + y2 A2 + · · ·

s = 0
⇒

x = 0

y = 0
⇒

log C = 0
⇒

C = I



Size of models for 20x20 pixel image patches

linear model covariance model

# basis functions:

# parameters:

400

4002

≈ 4002/2 = 80,000

80,0002 

40
0 

pi
xe

ls

. . .c1,1 c1,2 c1,400

. . .x C

Learning covariance basis is infeasible ⇒ need to simplify



Parameterizing covariance components

Do all patterns of co-variation occur in natural images?

bark foliage



Intuition behind the model parameterization

bk: common directions of change in variation/correlation

bark foliage



Intuition behind the model parameterization

bark foliage

bk

bk vectors allow a much more compact description of the components

# params:     1000 x 400 = 4e5     vs.    80,0002 = 6.4e91000 bks:

Aj =
∑

k

wjkbkbT
k



bk vectors are shared

0

+

-
wjk

bk



bk vectors are shared

0

+

-
wjk

bk











A distributed representation for covariance patterns
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Figure 3: Proposedmodel encodes local image distributions. In linear coding, the precise pixel values of the
input image are encoded by the joint activities of linear feature detectors (gray axes, plotted as in figures 1
and 2). In contrast, the proposed distribution codingmodel infers the distribution that is most consistent with
the input image; images from the same distribution will have the same (or similar) representations. Each
distribution can be described by several image features, correspoding to the eigenvectors of its covariance
(the major and minor axes of ellipses in the diagram), but this representation does not scale with the high
dimensionality of images and the wide range of image distributions present in natural scenes. A more
compact and flexible approach is to use a large shared set of image features (colored arrows) for all possible
distributions; increased or decreased activity of these linear feature detectors (red and blue, respectively)
can encode the desired correlational patterns. In the distribution coding model, each neuron (four in the
schematic shown here) corresponds to a specific pattern of activation and suppression in the linear features.
Their joint activity (activation pattern shown on top) describes the final encoded image distribution, which
is the same for both input images in the two image regions.
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Figure 3: Proposedmodel encodes local image distributions. In linear coding, the precise pixel values of the
input image are encoded by the joint activities of linear feature detectors (gray axes, plotted as in figures 1
and 2). In contrast, the proposed distribution codingmodel infers the distribution that is most consistent with
the input image; images from the same distribution will have the same (or similar) representations. Each
distribution can be described by several image features, correspoding to the eigenvectors of its covariance
(the major and minor axes of ellipses in the diagram), but this representation does not scale with the high
dimensionality of images and the wide range of image distributions present in natural scenes. A more
compact and flexible approach is to use a large shared set of image features (colored arrows) for all possible
distributions; increased or decreased activity of these linear feature detectors (red and blue, respectively)
can encode the desired correlational patterns. In the distribution coding model, each neuron (four in the
schematic shown here) corresponds to a specific pattern of activation and suppression in the linear features.
Their joint activity (activation pattern shown on top) describes the final encoded image distribution, which
is the same for both input images in the two image regions.
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natural 
image patch

linear 
features

higher-level representation

model schematic

Both images have 
same distribution 
representation



A distributed representation for covariance patterns
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Figure 3: Proposedmodel encodes local image distributions. In linear coding, the precise pixel values of the
input image are encoded by the joint activities of linear feature detectors (gray axes, plotted as in figures 1
and 2). In contrast, the proposed distribution codingmodel infers the distribution that is most consistent with
the input image; images from the same distribution will have the same (or similar) representations. Each
distribution can be described by several image features, correspoding to the eigenvectors of its covariance
(the major and minor axes of ellipses in the diagram), but this representation does not scale with the high
dimensionality of images and the wide range of image distributions present in natural scenes. A more
compact and flexible approach is to use a large shared set of image features (colored arrows) for all possible
distributions; increased or decreased activity of these linear feature detectors (red and blue, respectively)
can encode the desired correlational patterns. In the distribution coding model, each neuron (four in the
schematic shown here) corresponds to a specific pattern of activation and suppression in the linear features.
Their joint activity (activation pattern shown on top) describes the final encoded image distribution, which
is the same for both input images in the two image regions.
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Figure 3: Proposedmodel encodes local image distributions. In linear coding, the precise pixel values of the
input image are encoded by the joint activities of linear feature detectors (gray axes, plotted as in figures 1
and 2). In contrast, the proposed distribution codingmodel infers the distribution that is most consistent with
the input image; images from the same distribution will have the same (or similar) representations. Each
distribution can be described by several image features, correspoding to the eigenvectors of its covariance
(the major and minor axes of ellipses in the diagram), but this representation does not scale with the high
dimensionality of images and the wide range of image distributions present in natural scenes. A more
compact and flexible approach is to use a large shared set of image features (colored arrows) for all possible
distributions; increased or decreased activity of these linear feature detectors (red and blue, respectively)
can encode the desired correlational patterns. In the distribution coding model, each neuron (four in the
schematic shown here) corresponds to a specific pattern of activation and suppression in the linear features.
Their joint activity (activation pattern shown on top) describes the final encoded image distribution, which
is the same for both input images in the two image regions.
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natural 
image patch

linear 
features

higher-level representation

model schematic

Both images have 
same distribution 
representation: 

model generalizes 
over the two edges



Inferring the distribution from a single image

bark

tree edge

a

b

c d



A distributed representation for covariance patterns

natural 
image patch

linear 
features

higher-level representation

model schematic

• Each pattern in top level represents a 
distribution of images

• Model

- 20x20 image patches

- 1000 correlation vectors (bk’s)

- 150 high-level units (y’s) each fully 
connected to all bk’s

• Adapt both correlation vectors and 
weights to natural images



Analyzing the model

36 (out of 1000) vectors bk

Alternative functional explanation 

for simple cells: describing local 

distributions of images

0

+

-



.  .  . 

.  .  . 

Analyzing a typical model neuron

0

+

-

bk

bk

wjkwjk



.  .  . 

.  .  . 

Analyzing a typical model neuron



.  .  . 

.  .  . 

top feature

Analyzing a typical model neuron



.  .  . 

.  .  . 

top 9 features

Analyzing a typical model neuron



.  .  . 

.  .  . 

top 9/bottom 9 features

Analyzing a typical model neuron



.  .  . 

.  .  . 

all significant features

Analyzing a typical model neuron



linear prediction

grating phase

complex cell

simple cell

(Movshon et al, 1978)

How does this cell respond?



model prediction

grating phase

complex cell

simple cell

(Movshon et al, 1978)

How does this cell respond?



model prediction

grating phase

complex cell

simple cell

How does this cell respond?

A functional role for complex cells: 
generalization in natural scenes



surround suppression in V1

+ ++

(Jones et al, 2002)
optimal 
grating

Many other properties of  V1 cells are explained



surround suppression in V1

+ ++

(Jones et al, 2002)
optimal 
grating

Many other properties of  V1 cells are explained



optimal 
grating

cross-orientation suppression in V1

+ ++

(Bonds, 1989)

Many other properties of  V1 cells are explained



optimal 
grating

cross-orientation suppression in V1

+ ++

(Bonds, 1989)

Many other properties of  V1 cells are explained



Compare to classical models of complex cells

     

P1: ARS/ary P2: ARK

December 26, 1997 16:38 Annual Reviews AR050-03

54 CALLAWAY

Figure 1 Contributions of individual neurons to local excitatory connections between cortical

layers. From left to right, typical spiny neurons in layers 4C, 2–4B, 5, and 6 are shown. Dendritic

arbors are illustrated with thick lines and axonal arbors with finer lines. Each cell projects axons

specifically to only a subset of the layers. This simplified diagram focuses on connections between

layers 2–4B, 4C, 5, and 6 and does not incorporate details of circuitry specific for subdivisions of

these layers. A model of the interactions between these neurons is shown in Figure 2. The neurons

shown have been modified for illustrative purposes from actual reconstructions of intracellularly

labeled cells (seeCallaway&Wiser 1996,Wiser&Callaway 1996). [Modeled after Gilbert (1983).]

A similar circuit exists within macaque V1 (Anderson et al 1993, Callaway

& Wiser 1996) if we consider layer 4C to be analogous to the cat’s layer 4 and

layers 2–4B analogous to layer 2/3 (Casagrande & Kaas 1994; see also above).

Layer 4C is the primary recipient of geniculate input, and the spiny stellate

neurons in the layer project mostly to layers 2–4B, with a weaker projection

to deeper layers (Figure 1, far left). Layer 2–4B spiny stellate and pyramidal

neurons in turn project to layer 5 (Figure 1, middle-left). However, unlike cat

V1, there may not be a dense projection from layer 5 to layer 6 (Callaway

& Wiser 1996; see below for details). Instead, most layer 5 pyramids provide

extremely dense feedback projections to layers 2–4B (Figure 1,middle). Layer 6

pyramidal neuronswith dense dendritic arbors in layer 5 are also likely to receive

input from layers 2–4B (Figure 1, middle-right), as well as from horizontal

axons of layer 5 pyramids (not shown in Figure 1) (Callaway & Wiser 1996).

Like layer 5 pyramids, these layer 6 cells provide a strong feedback projection

to layers 2–4B (Figure 1, middle-right) (Wiser & Callaway 1996). A second

class of layer 6 pyramid has few dendritic branches in layer 5 and makes a

strong feedback projection to layer 4C (Figure 1, far right) (Wiser & Callaway

1996).

Cellular 
morphology 
of a V1 cell



most activating stimuli

most suppressive stimuli

. . .

. . .

What kind of images activate this unit?

Main point: unit encodes distributions of images



relationship to neurons in V1/V2/...

complex cells?

shape/curvature-encoding neurons?

non-Cartesian pattern cells?

Other orientation-tuned model neurons



relationship to neurons in V1/V2/...

some neurons in V4 appear tuned to be 
broadly tuned, but selective for 
orientation

(David et al, 2006)

Some encode global frequency/orientation



Another texture field unit



A spatial scale edge unit

And 100’s more ...



V1
V2

V1-V2 taxonomy (data from Willmore and Gallant)



image distributions in pixel space

2D projection of 400D space

How does the model encode the image regions?



distributions in simple cell space (V1)

2D projection of 400D space

How does the model encode the image regions?



distributions in higher-order space

2D projection of 150D space

How does the model encode the image regions?

Model generalizes over regions while keeping them distinct.  

All unsupervised.



Winner maps



Clustering the higher-order representation yields segmentation

clustering y’s clustering color



A distributed code for visual surfaces



Texture gradients in natural scenes

• image density changes continuously

• need to:

- infer density from single image

- model smooth & abrupt changes

• important for perceptual organization:

- 3D scene structure

- region grouping

- texture boundaries

• How could this be modeled?



Smooth changes in representation for texture gradients
v act 3 biggest pcs

higher-level output First 3 PCs



Using spike-triggered averaging to estimate simple cell RFs

(Ringach 2002)

Response

Stimulus
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Figure 1. Two alternative illustrations of the reverse correlation procedure. Left: Discretized
stimulus sequence and observed neural response (spike train). On each time step, the stimu-
lus consists of an array of randomly chosen values (eight, for this example), corresponding to
the intensities of a set of individual pixels, bars, or any other fixed spatial patterns. The neu-
ral response at any particular moment in time is assumed to be completely determined by the
stimulus segment that occurred during a pre-specified interval in the past. In this figure, the
segment covers six time steps, and lags three time steps behind the current time (to account
for response latency). The spike-triggered ensemble consists of the set of segments associated
with spikes. The spike-triggered average (STA) is constructed by averaging these stimulus seg-
ments (and subtracting off the average over the full set of stimulus segments). Right: Geometric
(vector space) interpretation of the STA. Each stimulus segment corresponds to a point in a d-
dimensional space (in this example, d = 48) whose axes correspond to stimulus values (e.g.,
pixel intensities) during the interval. For illustration purposes, the scatter plot shows only two
of the 48 axes. The spike-triggered stimulus segments (white points) constitute a subset of all
stimulus segments presented (black points). The STA, indicated by the line in the diagram, cor-
responds to the difference between the mean (center of mass) of the spike-triggered ensemble,
and the mean of the raw stimulus ensemble. Note that the interpretation of this representation
of the stimuli is only sensible under Poisson spike-generation - the scatter plot depiction implies
that the probability of spiking depends only on the position in the stimulus space.

3

(Simoncelli etal 2004)
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0
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a b

Figure 1: Geometric depiction of spike-triggered analyses. a, Spike-triggered averaging

with two-dimensional stimuli. Black points indicate raw stimuli. White points indicate stim-

uli eliciting a spike, and the STA (black vector), which provides an estimate of !k0, corre-

sponds to their center of mass. b, Spike-triggered covariance analysis of suppressive axes.

Shown are a set of stimuli lying on a plane perpendicular to the excitatory kernel, !k0. Within

the plane, stimuli eliciting a spike are concentrated in an elliptical region. The minor axis of

the ellipse corresponds to a suppressive stimulus direction: stimuli with a significant compo-

nent along this axis are less likely to elicit spikes. The stimulus component along the major

axis of the ellipse has no influence on spiking.

Here we develop a white noise methodology for characterizing a neuron with gain control.
We show that a set of suppressive kernels may be recovered by finding the eigenvectors of
the spike-triggered covariance matrix associated with smallest variance. We apply the tech-
nique to electrophysiological data obtained from ganglion cells in salamander and macaque
retina, and recover a set of axes that are shown to reduce responses in the neuron. More-
over, when we fit a gain control model to the data using a maximum likelihood procedure
within this subspace, the model accounts for changes in the STA as a function of contrast.

1 Characterizing suppressive axes

As in all white noise approaches, we assume that stimuli correspond to vectors, !s, in some
finite-dimensional space (e.g., a neighborhood of pixels or an interval of time samples).
We assume a gain control model in which the probability of a stimulus eliciting a spike
grows monotonically with the halfwave-rectified projection onto an excitatory linear kernel,

!!k0 · !s", and is suppressively modulated by the fullwave-rectified projection onto a set of
linear kernels, |!kn · !s|.

First, we recover the excitatory kernel, !k0. This is achieved by presenting spherically sym-
metric input stimuli (e.g., Gaussian white noise) to the neuron and computing the STA
(Fig. 1a). STA correctly recovers the excitatory kernel, under the assumption that each
of the gain control kernels are orthogonal (or equal) to the excitatory kernel. The proof
is essentially the same as that given for recovering the kernel of a linear model followed
by a monotonic nonlinearity [3]. In particular, any stimulus can be decomposed into a
component in the direction of the excitatory kernel, and a component in a perpendicular
direction. This can be paired with another stimulus that is identical, except that its compo-
nent in the perpendicular direction is negated. The two stimuli are equally likely to occur
in a spherically Gaussian stimulus set (since they are equidistant from the origin), and they
are equally likely to elicit a spike (since their excitatory components are equal, and their
rectified perpendicular components are equal). Their vector average lies in the direction of
the excitatory kernel. Thus, the STA (which is an average over all such stimuli, or all such
stimulus pairs) must also lie in that direction. In a subsequent section we explain how to

2

Spike-triggered covariance (Schwartz, Chichilnisky, and Simoncelli, 02)



Spike-triggered covariance (Simoncelli, et al, 2004)
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Figure 4. Simulated characterization of a particular LNP model using spike-triggered covari-
ance (STC). In this model, the Poisson spike generator is driven by the sum of squares of two
oriented linear filter responses. As in figure 1, filters are 6× 8, and thus live in a 48-dimensional
space. The simulation is based on a sequence of 50, 000 raw stimuli, with a response containing
4, 500 spikes. Top, left: simulated raw and spike-triggered stimulus ensembles, viewed in a
two-dimensional subspace that illustrates the model behavior. The covariance of these ensem-
bles within this two-dimensional space is represented geometrically by an ellipse that is three
standard deviations from the origin in all directions. The raw stimulus ensemble has equal vari-
ance in all directions, as indicated by the black circle. The spike-triggered ensemble is elongated
in one direction, as represented by the white ellipse. Top, right: Eigenvalue analysis of the sim-
ulated data. The principle axes of the covariance ellipse correspond to the eigenvectors of the
spike-triggered covariance matrix, and the associated eigenvalues indicate the variance of the
spike-triggered stimulus ensemble along each of these axes. The plot shows the full set of 48
eigenvalues, sorted in descending order. Two of these are substantially larger than the others,
and indicate the presences of two axes in the stimulus space along which the model responds.
The others correspond to stimulus directions that the model ignores. Also shown are three ex-
ample eigenvectors (6 × 8 linear filters). Bottom, one-dimensional plots: Spike-triggered and
raw histograms of responses of the two high-variance linear filters, along with the nonlinear
firing rate functions estimated from their quotient (see figure 3). Bottom, two-dimensional
plot: the quotient of the two-dimensional spike-triggered and raw histograms provides an esti-
mate of the two-dimensional nonlinear firing rate function. This is shown as a circular-cropped
grayscale image, where intensity is proportional to firing rate. Superimposed contours indicate
four different response levels.
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Figure 5. Characterization of a simulated LNPmodel, constructed from the squared response of
one linear filter divided by the sum of squares of its own response and the response of another
filter. The simulation is based on a sequence of 200, 000 raw stimuli, with a response containing
8, 000 spikes. See text and caption of figure 4 for details.
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Spike-triggered covariance of macaque V1 neurons (Chen et al ’07)

• collect spikes to random binary 
stimuli (10x10 to 12x12)

• throw out eye positions outside 
fixation window

• collect spike-triggered simulus 
ensemble

• spike-triggered average:

- average ensemble

• spike-triggered covariance:

- compute ensemble 
covariance 

- select significant eigenvectors 

hand, cells with strong temporal modulations (simple-cell-like) are
likely to have a single dominant eigenvector (i.e., the largest jump
is between the first and second eigenvalues). This eigenvector
typically resembled STA (data not shown), which represents the
linear RF of the simple cell. Note that we did not strictly distinguish
between simple and complex cells because recent studies suggested
that V1 neurons fall on a simple/complex continuum rather than in
two distinct classes (18, 19).

Many simple- or complex-like neurons also exhibited additional
excitatory eigenvectors, whose eigenvalues showed smaller but
significant upward jumps (Fig. 2 A and B). This second group of
eigenvectors, referred to as ‘‘nondominant’’ excitatory eigenvectors,
were oriented similarly to the dominant eigenvectors but showed
more complex spatial structures and larger sizes (Figs. 2C and 3A).
For 38 cells, we also found a third group of eigenvectors with
significantly lower eigenvalues. Most of these suppressive eigen-
vectors (Fig. 2C, second cell; Fig. 3A, third and fourth cells) are
oriented differently from the excitatory eigenvectors. It is important
to note that, although the significant eigenvectors provide a func-
tional description of the RF that is indicative of the response
properties of the presynaptic neurons, each significant eigenvector
does not necessarily represent the RF of an individual presynaptic
cell (i.e., an ‘‘anatomical subunit’’). Instead, it is likely to represent
a linear combination of multiple anatomical subunits (11, 13).
However, as a convenient functional description, we refer to these
significant eigenvectors as the excitatory or suppressive RF
subunits.

Relationship Between Subunit Groups. To understand the relation-
ship between the three groups of subunits, we first compared their
locations and sizes by computing the pooled spatial envelope of
each group (square root of the weighted sum of squares of all of the
subunits in each group; see Materials and Methods) (13). Compared
with the dominant group, the nondominant excitatory subunits
showed a larger spatial envelope (Fig. 4 A and C), similar to the
finding in anesthetized monkey V1 (13). This finding could be
explained if the nondominant eigenvectors represent combinations
of multiple anatomical subunits that are spatially displaced from
each other. The suppressive subunits, on the other hand, largely
overlapped with the dominant subunits in space. Quantitative
comparison of the subunit sizes is summarized in Fig. 5 A and B,
based on the width at half height of each pooled envelope along the
preferred orientation (length) and the perpendicular axis (width).

We also compared the spatial-frequency and orientation tuning

of the three groups based on the pooled spatial spectrum of each
group (Fig. 4B). The spectrum of the nondominant excitatory group
largely overlapped with that of the dominant group (Fig. 4C),
indicating similar orientation and frequency tuning. In contrast, the
spectrum of the suppressive subunits showed little overlap with the
excitatory groups. The separation between the excitatory and
suppressive subunits in spatial spectrum was more pronounced
along the angular axis than the radial axis, indicating major differ-
ences in orientation as opposed to frequency tuning. For the
population of cells, the preferred spatial frequency and orientation
of the nondominant excitatory subunits were closely correlated with
those of the dominant subunits (Fig. 5 C Upper and D Upper), but
the suppressive subunits showed larger deviations in frequency
tuning and up to 90° difference in preferred orientation (Fig. 5 C
Lower and D Lower).

Response Invariance. The angular separation between the excitatory
and suppressive subunits in the spectral domain suggests that the
suppressive subunits contribute to cross-orientation suppression
(15), which should enhance the selectivity of V1 neurons. What is
the function of the nondominant excitatory subunits? Because each
excitatory eigenvector is likely to represent a combination of
multiple anatomical subunits (11, 13), and conversely an anatomical
subunit may be approximated as a combination of eigenvectors, we
examined various linear combinations of the excitatory eigenvec-

Fig. 2. Identification of significant eigenvectors, illustrated with two V1 cells
(Left and Right). (A) Eigenvalues of STC matrix. Dashed lines: control confi-
dence intervals (P ! 10"4). (B) Difference between neighboring eigenvalues.
Dashed line: confidence interval for the difference (P ! 10"4). (A and B) Large
circles represent significant eigenvalues satisfying criteria. (C) Significant eig-
envectors. Contrast of each eigenvector is scaled by its relative weight (see
Materials and Methods). Excitatory and suppressive eigenvectors were scaled
separately. (Scale: 0.5°.)

Fig. 1. Illustration of experimental and analytical procedures. (A) Example
eye position traces recorded by the eye tracker. (Scales: 1 s, 1°.) Shading:
periods with eye position outside of fixation window. Corresponding seg-
ments of the spike train (bottom) were excluded from analysis. Gray: excluded
spikes. (B) White noise stimuli. Gray box: stimulus preceding each spike.
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hand, cells with strong temporal modulations (simple-cell-like) are
likely to have a single dominant eigenvector (i.e., the largest jump
is between the first and second eigenvalues). This eigenvector
typically resembled STA (data not shown), which represents the
linear RF of the simple cell. Note that we did not strictly distinguish
between simple and complex cells because recent studies suggested
that V1 neurons fall on a simple/complex continuum rather than in
two distinct classes (18, 19).

Many simple- or complex-like neurons also exhibited additional
excitatory eigenvectors, whose eigenvalues showed smaller but
significant upward jumps (Fig. 2 A and B). This second group of
eigenvectors, referred to as ‘‘nondominant’’ excitatory eigenvectors,
were oriented similarly to the dominant eigenvectors but showed
more complex spatial structures and larger sizes (Figs. 2C and 3A).
For 38 cells, we also found a third group of eigenvectors with
significantly lower eigenvalues. Most of these suppressive eigen-
vectors (Fig. 2C, second cell; Fig. 3A, third and fourth cells) are
oriented differently from the excitatory eigenvectors. It is important
to note that, although the significant eigenvectors provide a func-
tional description of the RF that is indicative of the response
properties of the presynaptic neurons, each significant eigenvector
does not necessarily represent the RF of an individual presynaptic
cell (i.e., an ‘‘anatomical subunit’’). Instead, it is likely to represent
a linear combination of multiple anatomical subunits (11, 13).
However, as a convenient functional description, we refer to these
significant eigenvectors as the excitatory or suppressive RF
subunits.

Relationship Between Subunit Groups. To understand the relation-
ship between the three groups of subunits, we first compared their
locations and sizes by computing the pooled spatial envelope of
each group (square root of the weighted sum of squares of all of the
subunits in each group; see Materials and Methods) (13). Compared
with the dominant group, the nondominant excitatory subunits
showed a larger spatial envelope (Fig. 4 A and C), similar to the
finding in anesthetized monkey V1 (13). This finding could be
explained if the nondominant eigenvectors represent combinations
of multiple anatomical subunits that are spatially displaced from
each other. The suppressive subunits, on the other hand, largely
overlapped with the dominant subunits in space. Quantitative
comparison of the subunit sizes is summarized in Fig. 5 A and B,
based on the width at half height of each pooled envelope along the
preferred orientation (length) and the perpendicular axis (width).

We also compared the spatial-frequency and orientation tuning

of the three groups based on the pooled spatial spectrum of each
group (Fig. 4B). The spectrum of the nondominant excitatory group
largely overlapped with that of the dominant group (Fig. 4C),
indicating similar orientation and frequency tuning. In contrast, the
spectrum of the suppressive subunits showed little overlap with the
excitatory groups. The separation between the excitatory and
suppressive subunits in spatial spectrum was more pronounced
along the angular axis than the radial axis, indicating major differ-
ences in orientation as opposed to frequency tuning. For the
population of cells, the preferred spatial frequency and orientation
of the nondominant excitatory subunits were closely correlated with
those of the dominant subunits (Fig. 5 C Upper and D Upper), but
the suppressive subunits showed larger deviations in frequency
tuning and up to 90° difference in preferred orientation (Fig. 5 C
Lower and D Lower).

Response Invariance. The angular separation between the excitatory
and suppressive subunits in the spectral domain suggests that the
suppressive subunits contribute to cross-orientation suppression
(15), which should enhance the selectivity of V1 neurons. What is
the function of the nondominant excitatory subunits? Because each
excitatory eigenvector is likely to represent a combination of
multiple anatomical subunits (11, 13), and conversely an anatomical
subunit may be approximated as a combination of eigenvectors, we
examined various linear combinations of the excitatory eigenvec-

Fig. 2. Identification of significant eigenvectors, illustrated with two V1 cells
(Left and Right). (A) Eigenvalues of STC matrix. Dashed lines: control confi-
dence intervals (P ! 10"4). (B) Difference between neighboring eigenvalues.
Dashed line: confidence interval for the difference (P ! 10"4). (A and B) Large
circles represent significant eigenvalues satisfying criteria. (C) Significant eig-
envectors. Contrast of each eigenvector is scaled by its relative weight (see
Materials and Methods). Excitatory and suppressive eigenvectors were scaled
separately. (Scale: 0.5°.)

Fig. 1. Illustration of experimental and analytical procedures. (A) Example
eye position traces recorded by the eye tracker. (Scales: 1 s, 1°.) Shading:
periods with eye position outside of fixation window. Corresponding seg-
ments of the spike train (bottom) were excluded from analysis. Gray: excluded
spikes. (B) White noise stimuli. Gray box: stimulus preceding each spike.
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Spike-triggered covariance of macaque V1 neurons (Chen et al ’07)

• eigenvectors represent 
excitatory and suppressive sub-
units

- not necesarily anatomical, eg 
simple cells

- could be linear combinations 
of anatomical subunits

• some only excitatory

• suppressive usually weaker

• note off-orientation (non-
orthogonal) suppressive subunits

hand, cells with strong temporal modulations (simple-cell-like) are
likely to have a single dominant eigenvector (i.e., the largest jump
is between the first and second eigenvalues). This eigenvector
typically resembled STA (data not shown), which represents the
linear RF of the simple cell. Note that we did not strictly distinguish
between simple and complex cells because recent studies suggested
that V1 neurons fall on a simple/complex continuum rather than in
two distinct classes (18, 19).

Many simple- or complex-like neurons also exhibited additional
excitatory eigenvectors, whose eigenvalues showed smaller but
significant upward jumps (Fig. 2 A and B). This second group of
eigenvectors, referred to as ‘‘nondominant’’ excitatory eigenvectors,
were oriented similarly to the dominant eigenvectors but showed
more complex spatial structures and larger sizes (Figs. 2C and 3A).
For 38 cells, we also found a third group of eigenvectors with
significantly lower eigenvalues. Most of these suppressive eigen-
vectors (Fig. 2C, second cell; Fig. 3A, third and fourth cells) are
oriented differently from the excitatory eigenvectors. It is important
to note that, although the significant eigenvectors provide a func-
tional description of the RF that is indicative of the response
properties of the presynaptic neurons, each significant eigenvector
does not necessarily represent the RF of an individual presynaptic
cell (i.e., an ‘‘anatomical subunit’’). Instead, it is likely to represent
a linear combination of multiple anatomical subunits (11, 13).
However, as a convenient functional description, we refer to these
significant eigenvectors as the excitatory or suppressive RF
subunits.

Relationship Between Subunit Groups. To understand the relation-
ship between the three groups of subunits, we first compared their
locations and sizes by computing the pooled spatial envelope of
each group (square root of the weighted sum of squares of all of the
subunits in each group; see Materials and Methods) (13). Compared
with the dominant group, the nondominant excitatory subunits
showed a larger spatial envelope (Fig. 4 A and C), similar to the
finding in anesthetized monkey V1 (13). This finding could be
explained if the nondominant eigenvectors represent combinations
of multiple anatomical subunits that are spatially displaced from
each other. The suppressive subunits, on the other hand, largely
overlapped with the dominant subunits in space. Quantitative
comparison of the subunit sizes is summarized in Fig. 5 A and B,
based on the width at half height of each pooled envelope along the
preferred orientation (length) and the perpendicular axis (width).

We also compared the spatial-frequency and orientation tuning

of the three groups based on the pooled spatial spectrum of each
group (Fig. 4B). The spectrum of the nondominant excitatory group
largely overlapped with that of the dominant group (Fig. 4C),
indicating similar orientation and frequency tuning. In contrast, the
spectrum of the suppressive subunits showed little overlap with the
excitatory groups. The separation between the excitatory and
suppressive subunits in spatial spectrum was more pronounced
along the angular axis than the radial axis, indicating major differ-
ences in orientation as opposed to frequency tuning. For the
population of cells, the preferred spatial frequency and orientation
of the nondominant excitatory subunits were closely correlated with
those of the dominant subunits (Fig. 5 C Upper and D Upper), but
the suppressive subunits showed larger deviations in frequency
tuning and up to 90° difference in preferred orientation (Fig. 5 C
Lower and D Lower).

Response Invariance. The angular separation between the excitatory
and suppressive subunits in the spectral domain suggests that the
suppressive subunits contribute to cross-orientation suppression
(15), which should enhance the selectivity of V1 neurons. What is
the function of the nondominant excitatory subunits? Because each
excitatory eigenvector is likely to represent a combination of
multiple anatomical subunits (11, 13), and conversely an anatomical
subunit may be approximated as a combination of eigenvectors, we
examined various linear combinations of the excitatory eigenvec-

Fig. 2. Identification of significant eigenvectors, illustrated with two V1 cells
(Left and Right). (A) Eigenvalues of STC matrix. Dashed lines: control confi-
dence intervals (P ! 10"4). (B) Difference between neighboring eigenvalues.
Dashed line: confidence interval for the difference (P ! 10"4). (A and B) Large
circles represent significant eigenvalues satisfying criteria. (C) Significant eig-
envectors. Contrast of each eigenvector is scaled by its relative weight (see
Materials and Methods). Excitatory and suppressive eigenvectors were scaled
separately. (Scale: 0.5°.)

Fig. 1. Illustration of experimental and analytical procedures. (A) Example
eye position traces recorded by the eye tracker. (Scales: 1 s, 1°.) Shading:
periods with eye position outside of fixation window. Corresponding seg-
ments of the spike train (bottom) were excluded from analysis. Gray: excluded
spikes. (B) White noise stimuli. Gray box: stimulus preceding each spike.
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hand, cells with strong temporal modulations (simple-cell-like) are
likely to have a single dominant eigenvector (i.e., the largest jump
is between the first and second eigenvalues). This eigenvector
typically resembled STA (data not shown), which represents the
linear RF of the simple cell. Note that we did not strictly distinguish
between simple and complex cells because recent studies suggested
that V1 neurons fall on a simple/complex continuum rather than in
two distinct classes (18, 19).

Many simple- or complex-like neurons also exhibited additional
excitatory eigenvectors, whose eigenvalues showed smaller but
significant upward jumps (Fig. 2 A and B). This second group of
eigenvectors, referred to as ‘‘nondominant’’ excitatory eigenvectors,
were oriented similarly to the dominant eigenvectors but showed
more complex spatial structures and larger sizes (Figs. 2C and 3A).
For 38 cells, we also found a third group of eigenvectors with
significantly lower eigenvalues. Most of these suppressive eigen-
vectors (Fig. 2C, second cell; Fig. 3A, third and fourth cells) are
oriented differently from the excitatory eigenvectors. It is important
to note that, although the significant eigenvectors provide a func-
tional description of the RF that is indicative of the response
properties of the presynaptic neurons, each significant eigenvector
does not necessarily represent the RF of an individual presynaptic
cell (i.e., an ‘‘anatomical subunit’’). Instead, it is likely to represent
a linear combination of multiple anatomical subunits (11, 13).
However, as a convenient functional description, we refer to these
significant eigenvectors as the excitatory or suppressive RF
subunits.

Relationship Between Subunit Groups. To understand the relation-
ship between the three groups of subunits, we first compared their
locations and sizes by computing the pooled spatial envelope of
each group (square root of the weighted sum of squares of all of the
subunits in each group; see Materials and Methods) (13). Compared
with the dominant group, the nondominant excitatory subunits
showed a larger spatial envelope (Fig. 4 A and C), similar to the
finding in anesthetized monkey V1 (13). This finding could be
explained if the nondominant eigenvectors represent combinations
of multiple anatomical subunits that are spatially displaced from
each other. The suppressive subunits, on the other hand, largely
overlapped with the dominant subunits in space. Quantitative
comparison of the subunit sizes is summarized in Fig. 5 A and B,
based on the width at half height of each pooled envelope along the
preferred orientation (length) and the perpendicular axis (width).

We also compared the spatial-frequency and orientation tuning

of the three groups based on the pooled spatial spectrum of each
group (Fig. 4B). The spectrum of the nondominant excitatory group
largely overlapped with that of the dominant group (Fig. 4C),
indicating similar orientation and frequency tuning. In contrast, the
spectrum of the suppressive subunits showed little overlap with the
excitatory groups. The separation between the excitatory and
suppressive subunits in spatial spectrum was more pronounced
along the angular axis than the radial axis, indicating major differ-
ences in orientation as opposed to frequency tuning. For the
population of cells, the preferred spatial frequency and orientation
of the nondominant excitatory subunits were closely correlated with
those of the dominant subunits (Fig. 5 C Upper and D Upper), but
the suppressive subunits showed larger deviations in frequency
tuning and up to 90° difference in preferred orientation (Fig. 5 C
Lower and D Lower).

Response Invariance. The angular separation between the excitatory
and suppressive subunits in the spectral domain suggests that the
suppressive subunits contribute to cross-orientation suppression
(15), which should enhance the selectivity of V1 neurons. What is
the function of the nondominant excitatory subunits? Because each
excitatory eigenvector is likely to represent a combination of
multiple anatomical subunits (11, 13), and conversely an anatomical
subunit may be approximated as a combination of eigenvectors, we
examined various linear combinations of the excitatory eigenvec-

Fig. 2. Identification of significant eigenvectors, illustrated with two V1 cells
(Left and Right). (A) Eigenvalues of STC matrix. Dashed lines: control confi-
dence intervals (P ! 10"4). (B) Difference between neighboring eigenvalues.
Dashed line: confidence interval for the difference (P ! 10"4). (A and B) Large
circles represent significant eigenvalues satisfying criteria. (C) Significant eig-
envectors. Contrast of each eigenvector is scaled by its relative weight (see
Materials and Methods). Excitatory and suppressive eigenvectors were scaled
separately. (Scale: 0.5°.)

Fig. 1. Illustration of experimental and analytical procedures. (A) Example
eye position traces recorded by the eye tracker. (Scales: 1 s, 1°.) Shading:
periods with eye position outside of fixation window. Corresponding seg-
ments of the spike train (bottom) were excluded from analysis. Gray: excluded
spikes. (B) White noise stimuli. Gray box: stimulus preceding each spike.
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Spike-triggered covariance of macaque V1 neurons (Chen et al ’07)

• other types of STC eigenvectors

• some properties:

- quadrature Gabor-like pairs 
(from orthogonality)

- cross-orientation suppression

cell C

cell D

cell E

cell F



Analysis of log-covariance components

100 200 300 400

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

in all 400 dimensions:



100 200 300 400

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.15 1.04 1.02 0.94

...

-0.53-0.51-0.50-0.48

...

Analysis of log-covariance components



100 200 300 400

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.47 1.34 1.02

-0.80-0.61-0.55-0.52

...

0.98

...

Analysis of log-covariance components



100 200 300

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

400

0.57 0.56 0.55 0.54

-0.64-0.63-0.61-0.61

. . .

. . .
Text

Analysis of log-covariance components



. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

hand, cells with strong temporal modulations (simple-cell-like) are
likely to have a single dominant eigenvector (i.e., the largest jump
is between the first and second eigenvalues). This eigenvector
typically resembled STA (data not shown), which represents the
linear RF of the simple cell. Note that we did not strictly distinguish
between simple and complex cells because recent studies suggested
that V1 neurons fall on a simple/complex continuum rather than in
two distinct classes (18, 19).

Many simple- or complex-like neurons also exhibited additional
excitatory eigenvectors, whose eigenvalues showed smaller but
significant upward jumps (Fig. 2 A and B). This second group of
eigenvectors, referred to as ‘‘nondominant’’ excitatory eigenvectors,
were oriented similarly to the dominant eigenvectors but showed
more complex spatial structures and larger sizes (Figs. 2C and 3A).
For 38 cells, we also found a third group of eigenvectors with
significantly lower eigenvalues. Most of these suppressive eigen-
vectors (Fig. 2C, second cell; Fig. 3A, third and fourth cells) are
oriented differently from the excitatory eigenvectors. It is important
to note that, although the significant eigenvectors provide a func-
tional description of the RF that is indicative of the response
properties of the presynaptic neurons, each significant eigenvector
does not necessarily represent the RF of an individual presynaptic
cell (i.e., an ‘‘anatomical subunit’’). Instead, it is likely to represent
a linear combination of multiple anatomical subunits (11, 13).
However, as a convenient functional description, we refer to these
significant eigenvectors as the excitatory or suppressive RF
subunits.

Relationship Between Subunit Groups. To understand the relation-
ship between the three groups of subunits, we first compared their
locations and sizes by computing the pooled spatial envelope of
each group (square root of the weighted sum of squares of all of the
subunits in each group; see Materials and Methods) (13). Compared
with the dominant group, the nondominant excitatory subunits
showed a larger spatial envelope (Fig. 4 A and C), similar to the
finding in anesthetized monkey V1 (13). This finding could be
explained if the nondominant eigenvectors represent combinations
of multiple anatomical subunits that are spatially displaced from
each other. The suppressive subunits, on the other hand, largely
overlapped with the dominant subunits in space. Quantitative
comparison of the subunit sizes is summarized in Fig. 5 A and B,
based on the width at half height of each pooled envelope along the
preferred orientation (length) and the perpendicular axis (width).

We also compared the spatial-frequency and orientation tuning

of the three groups based on the pooled spatial spectrum of each
group (Fig. 4B). The spectrum of the nondominant excitatory group
largely overlapped with that of the dominant group (Fig. 4C),
indicating similar orientation and frequency tuning. In contrast, the
spectrum of the suppressive subunits showed little overlap with the
excitatory groups. The separation between the excitatory and
suppressive subunits in spatial spectrum was more pronounced
along the angular axis than the radial axis, indicating major differ-
ences in orientation as opposed to frequency tuning. For the
population of cells, the preferred spatial frequency and orientation
of the nondominant excitatory subunits were closely correlated with
those of the dominant subunits (Fig. 5 C Upper and D Upper), but
the suppressive subunits showed larger deviations in frequency
tuning and up to 90° difference in preferred orientation (Fig. 5 C
Lower and D Lower).

Response Invariance. The angular separation between the excitatory
and suppressive subunits in the spectral domain suggests that the
suppressive subunits contribute to cross-orientation suppression
(15), which should enhance the selectivity of V1 neurons. What is
the function of the nondominant excitatory subunits? Because each
excitatory eigenvector is likely to represent a combination of
multiple anatomical subunits (11, 13), and conversely an anatomical
subunit may be approximated as a combination of eigenvectors, we
examined various linear combinations of the excitatory eigenvec-

Fig. 2. Identification of significant eigenvectors, illustrated with two V1 cells
(Left and Right). (A) Eigenvalues of STC matrix. Dashed lines: control confi-
dence intervals (P ! 10"4). (B) Difference between neighboring eigenvalues.
Dashed line: confidence interval for the difference (P ! 10"4). (A and B) Large
circles represent significant eigenvalues satisfying criteria. (C) Significant eig-
envectors. Contrast of each eigenvector is scaled by its relative weight (see
Materials and Methods). Excitatory and suppressive eigenvectors were scaled
separately. (Scale: 0.5°.)

Fig. 1. Illustration of experimental and analytical procedures. (A) Example
eye position traces recorded by the eye tracker. (Scales: 1 s, 1°.) Shading:
periods with eye position outside of fixation window. Corresponding seg-
ments of the spike train (bottom) were excluded from analysis. Gray: excluded
spikes. (B) White noise stimuli. Gray box: stimulus preceding each spike.
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Summary

• We need to understand problem being solved:
generalization in natural scenes

• Proposed model to solve it:

- no a priori biological assumptions or constraints

• Right problem should give us insight

• Probabilities fundamental to solving this problem

• Good results:

- solves interesting & relevant problem

- many similarities to physiology

- many novel predictions & interpretations


