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What does the brain see!?
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What does the brain see
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What does the brain see!?




What does the brain see!




What does the brain see!?




A Laminar patterns of B Visual anatomical hierarchy C Marr model of D Anatomical hierarchy

interconnections hierarchical visual as a substrate for the
Area V2 processing functional hierarchy
AIT 3D
Sketch
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Oriented Gabor models of individual simple cells

2D Receptive Field

2D Gabor Function
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figure from Daugman, 1 990; data from Jones and Palmer, 1987



A theoretical approach

Describe computational function:

What problems does it need to solve?

Abstract from the details:

Incorporate important constraints.

Demonstrate performance:

Should be optimal for general images.

Explain neural data:

Predict from theoretical principles.

Models are bottom-up;
theories are top-down.

retina




Make theoretical predictions from the natural environment

natural environment

evolution theory
(or learning)

physiological data: optimal model:
* properties
* performance

?

only compare to the data dfter optimizing
do not fit the data

Prediction depends on data,
computational goal, and constraints

Is this possible?




space of possible
solutions to vision  \

biological solution



biological >
implementation /

(fully) functional
visual algorithms

How do we find this space!
* theoretical optimality

e computational complexity
* similarity of properties

algorithmic complexity

number of possible algorithms



A wing would be a most mystifying structure
if one did not know that birds flew.

Horace Barlow, 1961

An algorithm is likely to be understood more
readily by understanding the nature of the
broblem being solved than by examining the
mechanism in which it is embodied.

David Marr, 1982



Representing structure in natural images

image from Field (1994)



Representing structure in natural images

image from Field (1994)



Representing structure in natural images

image from Field (1994)



Theory: Efficient coding of natural images

¢ L

Need to describe all image structure in the scene.

What representation is best?

image from Field (1994)




Describing signals with a simple statistical model

Principle

Good codes capture the statistical distribution of sensory patterns.
How do we describe the distribution?

* Goal is to encode the data to desired precision

X = ais1+assas+---+arsp+e€
— As-+ €

* A filter bank description:

s =A"'x=Wx



Sparse coding

® To learn the optimal codes we optimize two terms:

E = —|preserve information| — A|sparseness of s;|

® |n terms of equations:

E:—Z[xn—Asn]Q—ZS(%)

n

® Minimizing this expression finds adapts the image features in A to natural images



natural scene code image with features image features

L0 g
1o 8
70 8 f
- : :

0 B ¥

before after
learning  learning

Features optimize coding efficiency:
* minimizes redundancy
* maximizes independence

Olshausen and Field, 1996



Efficient coding theory predicts VI receptive fields

a model of the receptive field:
an oriented Gabor function

DeAngelis, et al, 1 995

Olshausen and Field, 1996

V1 receptive fields are not just edge “detectors”:
an optimal code for all natural image structure



Efficient coding selects best of many possible sensory codes

Gabor
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A gap in the theory!?




A gap in the theory!?

‘‘‘‘‘‘‘‘

s K

Ganglion Horizontal
cell cell

Bipolar

cell

retina

. Light

from Hubel, 199

Amacrine
cell

Optic
Retina nerve o



Robust coding of natural images
Doi and Lewicki (2005, 2006, 2007)

® Theory refined:
= image is noisy and blurred

= neural population size changes

, image at 40° |
= neurons are noisy eccentricity |

-

original image

coarse sampling

A

Intensity

dense sampling

ﬂ

N\

AAAAAAAAAAAAAMAAAAAAAAAAA

-4 0 4
Visual angle [arc min]




Generalizing the model: sensory noise and optical blur

(a) Undistorted image (b) Fovea retinal image (c) 40 degrees eccentricity

I\

-4 0 4
Visual angle [arc min]

Intensity

SeNsory noise channel noise
(7) (g) only implicit
optical blur encoder |{ decoder :
O —O—W—O—+a—6
1mage observation representation :\ reconstruction :

Can also add sparseness and resource constraints



Traditional codes are not robust

encoding neurons

sensory input

Original




Traditional codes are not robust

encoding neurons
Add

noise equivalent
to | bit precision

sensory input

I x efficient coding

Original reconstruction (34% error)

(o8

| bit precision

-------

1 apii Vel



How do we learn robust codes?

Sensory noise channel noise

encoder | decoder

W—(O—{a}—@©

image observation representation reconstruction

Objective:

Find W and A that minimize reconstruction error.

® Channel capacity of the it neuron:
1
Ci — 5 IH(SNRi -+ 1)

® To limit capacity, fix the coefficient signal to noise ratio:

2
SNR, — (us)

2
o
" Now robust coding is formulated as a
constrained optimization problem.




Sparseness localizes the vectors and increases coding efficiency

normalized histogram
of coeff. kurtosis

encoding vectors (W) decoding vectors (A)
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Optimal weights match retinal code and response properties
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Robust coding of natural images

encoding neurons
Add

noise equivalent
to | bit precision

sensory input

Original reconstruction (34% error)

(o8

I x efficient coding

| bit precision

-------



Robust coding of natural images

encoding neurons

Weights adapted for optimal
robustness

sensory input

Original

. (o)
Ix robust coding reconstruction (3.86‘errr) |

| bit precision




Reconstruction improves by adding neurons

encoding neurons

Weights adapted for optimal
robustness

sensory input

Original reconstruction error: 0.6%

8X robust coding

| bit precision




Can derive minimum theoretical average error bound

£ — 1 1 Z oy if SNR > SNR..

M
M.SNR+1 N

A; - ith eigenvalue of the data covariance
N - input dimensionality

M - # of coding units (neurons)

Algorithm achieves theoretical lower bound

Results Bound
0.5x 19.9% 20.3%
| x 12.4% 12.5%

8x 2.0% 2.0%




What are higher-level computational goals!?




Response of a simple cell to translating grating
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(Movshon et al, 1978)



Response of a simple cell to translating grating

complex cell
/
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grating phase

(Movshon et al, 1978)



Response of a simple cell to translating grating

model prediction complex cell

/ /
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grating phase

(Movshon et al, 1978)



V1 cells have many other unexplained properties

surround suppression inV|

%)
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(Jones et al, 2002)

optimal &

grating



V1 cells have many other unexplained properties

surround suppression inV|
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(Jones et al, 2002)
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V1 cells have many other unexplained properties

surround suppression inV|
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(Jones et al, 2002)
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Models of VI non-linear responses

models for complex cells models for surround effects

Redctification

Stlmulus map — N @ — _/ —

Receptive Field T
/oca/
<, e

Suppressive Field

(Carandini et al, 2004,2005)

What is the functional significance?



Higher-level response properties




Higher-level response properties

Can we give a functional account?




Perceptual organization in natural scenes

image of Kyoto, Japan from E. Doi



A different representation of a natural scene
(Kersten and Yuille, 2003)




A representation we’re more familiar with




A representation we’re more familiar with




This is what our brain does




Modern segmentation algorithm using graph cuts

Construct fine-level graph: assign coupling weights between
neighbouring pixels according to intensity contrast

'

Create coarser-level graph:

1. Select representative nodes as seeds

R\zﬁﬁgt 2. Aggregate other pixels around seeds, based on their couplings
number || 3. Calculate aggregate (segment) properties
of nodes ' _ _ .
>1 4. Derive coarse-level couplings from fine-level couplings
and modify by similarity in aggregate properties

-

Evaluate segments’ saliency

v

Determine boundaries of salient segments by a top-down process I

from Sharon et al, 2006

What do we
know about the
visual system!?




Perceptual generalization in natural scenes




Perceptual generalization in natural scenes
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Perceptual generalization in natural scenes




Perceptual generalization in natural scenes

» ‘
-.a'

Conjecture:

Iwo patches are similar if
they come from the same
statistical distribution.




Generalization by distribution modeling




Generalization by distribution modeling




Linear representations do not separate the image classes

hillside

4

a' |Eas

* tree edge




How can we describe the distribution of local regions?

.
J




Distributed representations of an image

D:S1—|—82—|—83—|—84—|—85—|—36_|_...

= 81-—|- 82-+ 83.—|- 84-—|- 35-—|- 56.+ .




Distributed representations of image distributions




Modeling distributions of local scene regions

® model local scene structure, not
average scene statistics

® model all structure

- want a “‘complete” code

I“

= 3 universal “texture” model

® code should be distributed and
statistically efficient




Modeling distributions of local scene regions




Specific regions have subtle and characteristic correlations




Summarize all pair-wise correlations, ie the covariance




Region shows a characteristic pattern of correlations




Region shows a characteristic pattern of correlations




Region shows a characteristic pattern of correlations




Patterns captured by the covariance matrix

multi .

x ~ N(0,C)

neural activity describes the covariance

C=f(y)




A distributed code for covariance matrices

An efficient image code: linear basis:

1

+ S92

P2

+ 83

A basis for covariance matrices?

:yl

+ Y2

3

A2

+ S4

+ S5

5




Distributed representations of image distributions




Compare to linear basis coding

g = $1| P1 |+ S2| P2 |+ -

® code a single image:

X= ) 50

1

® images represented exactly

® no activity = blank image
s=0

j .

x =0

logC|=1y1| Al |+ yo| A% |+ -

code a single distribution:
p(x|y) = N(0,C)
logC =) y;A

J
exact image not encoded

no activity = “canonical’ distribution




Size of models for 20x20 pixel image patches

linear model covariance model

o
X
o
ol X
S
# basis functions: 400 ~ 400%/2 = 80,000
# parameters: 4002 80,0007

Learning covariance basis is infeasible = need to simplify



Parameterizing covariance components




Intuition behind the model parameterization




Intuition behind the model parameterization




b vectors are shared

P(x|y) = N(0,Cxz(y))
log C, = Zg y]A]
A, =¥, w,bbl




b vectors are shared

[yl Y, yJ]

P(x|y) = N(0,Cxz(y))
log C, = Zg y]A]
A, =¥, w,bbl
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A distributed representation for covariance patterns

model schematic

higher-level representation

Y1 eee Y e Yy

linear Both images have
features 15 - -+ 5 Dag same distribution
representation
natural
image patch X



A distributed representation for covariance patterns

model schematic

higher-level representation

Yo - Y Y,
linear b Both images have
features AR same distribution
T representation:
U model generalizes
image patch X over the two edges



Inferring the distribution from a single image




A distributed representation for covariance patterns

® FEach pattern in top level represents a

: distribution of images
model schematic

® Model
= 20x20 image patches
higher-level representation = 1000 correlation vectors (bi’s)
[ Yy . Y oo Yy j = |50 high-level units (y’s) each fully

connected to all by’s

P(xly) = N(0,Cz(y))

09 Cz = 3 yjA,
A, =¥, w,bbl




Analyzing the model

P(x|y) = N(0,Cx(y))
09 Cy = 32, YA,

A, =y, w,bbl

36 (out of 1000) vectors b,




Analyzing a typical model neuron




Analyzing a typical model neuron




Analyzing a typical model neuron

top feature

e




Analyzing a typical model neuron

top 9 features

/
4




Analyzing a typical model neuron

top 9/bottom 9 features




Analyzing a typical model neuron




How does this cell respond?

linear prediction complex cell

/ /

&
()]
2]
S~
7p]
)
X
o
/)]

180
grating phase

(Movshon et al, 1978)



How does this cell respond?

model prediction complex cell
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(Movshon et al, 1978)



How does this cell respond?

model prediction complex cell
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180
grating phase

A functional role for complex cells:

generalization in natural scenes



Many other properties of VI cells are explained

surround suppression in V1
¥ /
0
imal (Jones et al, 2002)
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Many other properties of VI cells are explained

surround suppression in V1

%

spikes/sec
N
o

0

0
timal (Jones et al, 2002)
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Many other properties of VI cells are explained

cross-orientation suppression in V1
| /
0
imal (Bonds, 1989)
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Many other properties of VI cells are explained

cross-orientation suppression in V1
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Compare to classical models of complex cells

Cellular

morphology
of aVl cell




What kind of images activate this unit?

most activating stimuli

e o o

most suppressive stimuli




Other orientation-tuned model neurons

relationship to neurons inVI/V2/...

complex cells?
shape/curvature-encoding neurons!?

non-Cartesian pattern cells?




Some encode global frequency/orientation

'wjk>0 ’wjk<o

N NN/ 74
Y, / /‘/ ,///’/ /
\\ /// //////

relationship to neurons inVI/V2/...

some neurons in V4 appear tuned to be
broadly tuned, but selective for
orientation

(David et al, 2006)




Another texture field unit

S A/
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A spatial scale edge uni
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"R PPN LN

And 100’s more ...



V1-V2 taxonomy (data from Willmore and Gallant)

I V?2

20

10
Distance between clusters

o

Sustained response (n=6)




How does the model encode the image regions!?

image distributions in pixel space

2D projection of 400D space



4

IMage regions

How does the model encode the

distributions in simple cell space (V1)

2D projection of 400D space



How does the model encode the image regions!?

distributions in higher-order space

2D projection of 150D space

Model generalizes over regions while keeping them distinct.

All unsupervised.



Winner




Clustering the higher-order representation yields segmentation

L e » » 5 “‘,‘»

clustering color
BP Relv




A distributed code for visual surfaces

Ju




Texture gradients in natural scenes

o AL

® image density changes continuously

® need to:
- infer density from single image

= model smooth & abrupt changes

® important for perceptual organization:
= 3D scene structure
= region grouping

= texture boundaries

® How could this be modeled?




Smooth changes in representation for texture gradients
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Using spike-triggered averaging to estimate simple cell RFs

Al
5
7 S
Stimulus ¢~ S
=
(@]
(@]
N
=
>
£
»
Response | | | |
t —o

stimulus component 1

(Simoncelli etal 2004)

(Ringach 2002)



Spike-triggered covariance (Schwartz, Chichilnisky, and Simoncelli, 02)




Spike-triggered covariance (Simoncelli, et al, 2004)

stimulus component 2
variance

0 10 20 30 40
eigenvalue number

stimulus component 2
variance

stimulus component 1 0 1'0 2'0 3'0 4'0
eigenvalue number



Spike-triggered covariance of macaque VI neurons (Chen et al '07)

Eye position

ijfv—_\———_’_—_w_—_}
VVW\/\NM&WA_,
Spike train

B IS SN N | A I I S N | —

Stimuli

ILIEEETTL R TR

LI A’—| L| Spike-triggered
I I I RN

stimulus ensemble

cell B

Eigenvalue

collect spikes to random binary
stimuli (10x10 to 12x12)

throw out eye positions outside
fixation window

collect spike-triggered simulus
ensemble

spike-triggered average:
- average ensemble
spike-triggered covariance:

= compute ensemble
covariance

- select significant eigenvectors



Spike-triggered covariance of macaque VI neurons (Chen et al '07)

® eigenvectors represent
excitatory and suppressive sub-
units

®
=
©
>
c
O
b=l
L

= not necesarily anatomical, eg
simple cells

= could be linear combinations
of anatomical subunits

® some only excitatory
® suppressive usually weaker

® note off-orientation (non-
orthogonal) suppressive subunits




Spike-triggered covariance of macaque VI neurons (Chen et al '07)

® other types of STC eigenvectors
® some properties:

= quadrature Gabor-like pairs
(from orthogonality)

..n"“l = Ccross-orientation suppression
3 /7

L |

S

cell D

=
AN
-
- - cell E

E
e
d - |-
cell F




Analysis of log-covariance components

Y,

in all 400 dimensions:
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Analysis of log-covariance components
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Analysis of log-covariance components
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Analysis of log-covariance components

i O
.......
. D

100 200 300 400



-
-

A E R







Summary

® We need to understand problem being solved:
generalization in natural scenes

® Proposed model to solve it:

= no a priori biological assumptions or constraints

® Right problem should give us insight

® Probabilities fundamental to solving this proble




