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Environment for Cognitive automobile
◦ Better Title:
Methodologies and Techniques for Cognitive 
Automobile applications
Application oriented selection ofApplication oriented selection of 
methodologies and techniques
Project oriented vision (French, German and 
European)

Situation in France:
◦ 35 million vehicles
◦ 4 million employments (direct or indirect)
◦ Market in XXB€, £, $
Passionate relation with « my » carPassionate relation with « my » car
◦ Would may vehicle remain so dum?

Intelligent Transportation Systems
IEEE ITS group, IEEE trans. For ITSC, trans. for 
Vehicular Technology

Orientations of research in automotive field
◦ Automatic driving versus Advanced Driving Aid

Systems
Environment perception
◦ Sensors data fusion etc◦ Sensors, data fusion, etc.
Driver behavior assessment
◦ Driving situation awareness
Cooperative cognition
◦ Distributed approach

« An ultimate artificially designed cognitive 
system should include a human operator »

Simon Haykin, McMaster Univ.
Dynamic Cognitive Systems Workshop, 

Niagara-on-the-Lake, g
May 26-29, 2008

Research works nearly abandoned automatic 
driving for driving assistance
◦ Do not replace driver, but assist him
Introduction of ADAS
◦ Advanced Driving Aid System
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Semi-automatic parking
◦ helps the driver in penetring into a parking slot in a parallel 

manœuvre
by automatically acting on the steering wheel 
driver is acting only on the pedal with the reverse gear inserted
In camera is controlling the motion of the vehicle

The pre-crash systemsp y
◦ announced by Toyota and Honda 
◦ reduce the negative effects of an accident

acting on the pretensioner of the safety belts before the acident
occurs and to reinforce driver pressure on the brake pedal in 
case of an imminent collision.

Tendency
◦ introducing functions more directly related to safety than to 

comfort, such as ACC.

System Aspects
◦ To deal with complexity of the controller algorithms.
Sensor Aspects
◦ Key technologies to detect the environment and the surrounding 

traffic
◦ Radar, lidar or video image processing 
◦ Data fusion
Infrastructure (incl. Communication v2i)
◦ Measure for street construction (e.g. brightness of lane 

markers)
◦ Technical devices (e.g. light warning system)
◦ Communication between infrastructure and vehicles
Communication v2v
◦ Vehicles network dimensioned to assistance system (e.g. 

concerning range).
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HMI Aspects
◦ The HMI gives the driver the feedback of the system activities or 

available information. Further aspects related to this topic are 
user acceptance and learn ability.

◦ Technology roadmap ADASE 01.10.03
◦ Deliverable D2D (Draft) Version 1.0 4
Degree of Driver Assistance
◦ The degree of driver assistance represents the different stages ofThe degree of driver assistance represents the different stages of 

driver support(e.g. information, warning, support, autonomous 
intervention). The more of the driving task is done by the system, 
the less the driver himself has to fulfill this task. This aspect is 
strictly connected with HMI, legal and system aspects.

Legal Aspects
◦ As some of the assistance systems can possibly overtake certain 

aspects of the control of the car, it becomes more and more 
necessary to think about the legal aspects concerning liability of 
the manufacturer, the car owner and the driver. The responsibility 
of the driver will be questioned depending on the degree of driver 
assistance.

Impact on Driver behavior

Roadsense UE project

Objectives

Develop a methodology of assessing the 
efficiency of the new driving assistance 
systems

 

Multi-disciplinary work 
{Human Factors + Techno}

Develop technological tools to set up this
methodology
Definition of DBITE
(Driver Behaviour Interface Test Equipment)

Among 82 metrics found in the litterature, 45 have been selected for real road 
situations experiments
Example:

Lateral control
Number of major line deviation
Steering wheel position variance
Steering wheel reversals rate
Time to Lane Crossing (TLC)

Lateral
telemeter

Rear view
cameraDriver camera

Front view
camera gyrometer

Push buttons

80 GB/hour

Telemeter
(radar , lidar)

Lateral
telemeter

Driver’feet
camera

Driving wheel
sensor

Pedals
position
sensors

ABS sensors
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Experiments with tens of drivers
◦ With the new ADAS
◦ Without the new ADAS
Record all vehicle sensor data and videos
during test sequenceduring test sequence
Post-synchronize data at 1 ms resolution
Compute off-line all metrics
Assess usefulness

Renault use case
◦ ACC, Adaptive Cruise Control, radar to detect TTC 

and action on breaks
Porsche use case
◦ Night Vision System using a Head Up Display, Night Vision System using a Head Up Display, 

projected image overlays the real scene on widescreen
PSA Peugeot Citroën use case
◦ Hypo vigilance detection camera

Sensor
data 

processing
ADAS

activation

Sensor AssessSensor
data 

processing

Evaluate metrics in real time
Assess
◦ Opportunity of ADAS activation
◦ Moment of activation and desactivation
Need to have a high level awareness of 
driving situation

ADAS
activation

Assess
driver 

behavior

Data fusion for driving situation 
characterization 22

Véronique CHERFAOUI
Heudiasyc Lab - UTC (France)

Experimental 
Vehicle :

Telemeter

Cameras

2
3

Camera

Overtaking sequence

2
4

Telemeter
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Data
fusion

Data
fusionData

fusion

Data
fusion

Situation
characterization

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 25

Physical
sensor

Signal/image
processing

Physical
sensor

Signal/image
processing

Physical
sensor

Signal/image
processing

Physical
sensor

Signal/image
processing

Physical
sensor

Signal/image
processing

Physical
sensor

Signal/image
processing

Physical
sensor

Signal/image
processing

Physical
sensor

Signal/image
processing

Physical
sensor

Signal/image
processing

What objectives to reach?
What information to get?
◦ Front vehicle following: position and speed of the 

front vehicle (accuracy: position 20cm, speed 5km/h)
◦ Overtaking assistance: existence of a rear left 

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 26

Overtaking assistance: existence of a rear left 
vehicle (no vehicle: 100%, a vehicle 90%)

Characterization of the data:
accuracy, reliability, frequency, delay

take advantage of redundancy of data to 
increase the accuracy and the reliability
take advantage of the complementary data to 
access to a higher level of interpretation

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 27

access to a higher level of interpretation

Estimation of the difference between the 
measure m from the sensor and the real 
unknown value X to measure 
Ordered and continuous space of definition

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 28

Ordered and continuous space of definition 
Ω

x ∈ Ω
X m

The distance between the experimental vehicle 
and the front vehicle (target) is 23m more or 
less 60cm

This means :
The real value X of the distance is in the

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 29

The real value X of the distance is in the 
interval [22,4m ; 23,6m]

p(x/m): probability that X = x, if the 
measure is m

Gaussian distribution : mean m, variance σ2

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 30

m

p(x/m)

x

σ

X
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πm(x): possibility that X = x, if the measure is m
The membership function μm(x)= πm(x) is 

defined by an expert

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 31

m

μm(x)

xX

The space of discernment is the set 2Ω of the 
subsets Ai of Ω

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 32

i

mm(Ai) is the evidence that X is in Ai if the 
measure is m

m(Ai )

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 33

m x

A1

A2

A3

m(A2 )

m(A3 )

m(A1 )

X

Estimation of the confidence in an hypothesis 
Hi
Discrete and non-ordered space of definition 
Ω

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 34

Ω

H1

H2

H4

H3

H1 : the target is a car

H2 : the target is a truck

H3 : the target is a motorbike

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 35

H4 : the target is a pedestrian

Temporal data fusion
Fusion of redundant data
Fusion of complementary data
Symbolic characterisation of the situations

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 36

Symbolic characterisation of the situations
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The experimental vehicle (EV) moves in the 
static environment
Other vehicles around the experimental 
vehicle move too.
The information true at time t becomes false

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 37

The information, true at time t, becomes false 
at time t + Δ t
Need to time stamp the data (different delays 
and frequencies)

YYY

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 38

Xt X

t+ Δ t

Xt

t+ Δ t

Use of the model evolution (a priori 
knowledges)

v (t + Δ t) = γ Δ t + v (t)
x (t + Δ t) = 1/2 γ Δ t2 + (v (t + Δ t) - v (t)) Δ t + x (t)
Based on the Kalman filter

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 39

Based on the Kalman filter
Target following algorithm
◦ line following
◦ multi-vehicles following 

Simultaneous observations of the same object
Improve the accuracy
Few redondant data because of the lack of 
sensors

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 40

X

Y
camera 1

X

Y

camera 2

X

Y
camera 1

camera 2

Same object, different types of data
Different objects 
Increase the knowledge on environment

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 41

X

Y
camera (Y,Z)

X

Y

telemeter (X,Z)

X

Y
camera (Y,Z)

telemeter (X,Z)

YYY

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 42

XXX
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Data interpretation
Definition of the symbolic models
Use of a priori knowledges

3

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 43

1

2

3

1 : -0,75m
2 :+0,80m
3 :.... } EV on the right lane

μ(x)

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 44

m x

low middle high
μlow(m)

μmiddle(m)

Temporal sequence of situations
Example of maneuver: the overtaking

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 45

F R

Top view
State :

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 46

Front camera Rear camera

F R

Top view
State : approach

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 47

Front camera Rear camera F R

Top view
State : approach

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 48

Front camera Rear camera
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F R

Top view
State : approach

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 49

Front camera Rear camera F R

Top view
State : approach

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 50

Front camera Rear camera

F R

Top view
State : approach

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 51

Front camera Rear camera F R

Top view
State : lane change

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 52

Front camera Rear camera

F R

Top view
State : lane change

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 53

Front camera Rear camera F R

Top view
State : overtake

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 54

Front camera Rear camera
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F R

Top view
State : overtake

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 55

Front camera Rear camera F R

Top view
State : overtake

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 56

Front camera Rear camera

F R

Top view
State : lane change

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 57

Front camera Rear camera F R

Top view
State : lane change

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 58

Front camera Rear camera

F R

Top view
State : move away

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 59

Front camera Rear camera F R

Top view
State : move away

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 60

Front camera Rear camera
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F R

Top view
State : move away

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 61

Front camera Rear camera F R

Top view
State : move away

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 62

Front camera Rear camera

F R

Top view
State :

Michèle Rombaut
DRiiVE : Data reduction and 

analysis 63

Front camera Rear camera

Data integration : the architecture
Data fusion : the methods
The general problems :
◦ the dating
◦ the spacial and temporal re referencing

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 64

◦ the spacial and temporal re-referencing
◦ the matching process
◦ the numeric/symbolic conversion

The accuracy is modeled by fuzzy sets

The matching process needs a decision

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 65

The reliability is modeled by a distribution 

of mass of evidence on the different 

hypotheses

Y1

Y3

Y2

Y4

X1

X3

X2

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 66

m(.)

distance

Y1 Y2 Y3 Y4

X1 X2 X3
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model the accuracy of the reports 
model the reliability of the reports and the 
decisions

one or several formalisms must be chosen 
in order to ease the data processing

M. Rombaut, V. Cherfaoui
Data fusion for driving situation 

characterization 67

p g
define the fusion architecture 
the spatial and temporal re-referencing
choose the matching algorithms
choose the fusion algorithms

Sophie LORIETTE-ROUGEGREZ
Jean-Marc NIGRO

Université de technologie de TroyesUniversité de technologie de Troyes
Laboratoire LM2S
TROYES – France

Véronique Cherfaoui
Université de Technologie de Compiègne

Laboratoire Heudiasyc
COMPIEGNE - France

68

Data from sensors/cameras

Objectives 

69

Data fusion

Recognition of the driving manœuvres 

Modelling of the driver behaviour

Time X Y S Teta Acc Phi Rg Rd
0.01 -32.00 0 15 0 0 0 -3.50 1.50
0.02 -31.85 0 15 0 0 0 -3.50 1.50
0.03 -31.70 0 15 0 0 0 -3.50 1.50
... ... ... ... ... ... ... ... ...

1.12 -15.52-2.01 15 -9.91 0 3 -1.46 3.54
1 13 -15 37-2 04 15 -9 68 0 3 -1 44 3 56

TV

70

Time Clock ( s)
Acc Acceleration of EV relative to TV (meters²/second)
Phi Front wheel angle of EV (in degrees)
Rd Position of EV against the right road side (meters)
Rg Position of EV against the left road side (meters)

Teta Angle of the target TV ( degrees)
S Speed of EV relative to TV (meters/second)
X Position on the x's axis of TV against EV (meters)
Y Position on the y's axis of TV against EV (meters)

Data's meaning

1.13 15.37 2.04 15 9.68 0 3 1.44 3.56
1.14 -15.22-2.06 15 -9.46 0 3 -1.41 3.59

Data obtained from the experimental vehicle
EV

x

y
Rd

Exhaustive generation of states, then choice of 
the best manœuvre                  IDRES approach

71

contextual recognition of the overtaking
manœuvre DSRC system

1. Overtaking intention
2. Begining of lane changing to the left
3. Crossing the left discontinuous line
4. End of lane changing to the left
5. Passing

72

5. Passing
6. End of Passing
7. Beginning of lane changing to the right
8. Crossing the right discontinuous line
9. End of lane changing to the right
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Data given by sensors

First level
Declarative rules

73

List of possible states

List of maneuversSecond level

maneuver recognition rules

List of possible maneuvers

Rule Waiting_for_overtaking
If EV and TV same lane between times ?t1 and ?t2

EV behind TV  between times ?t1 and ?t2
Then

State = "Waiting for overtaking” between times ?t1 and ?t2

74

Rule Overtaking_intention
If Fast coming from EV to TV between times ?t1 and ?t2
Then

State = "Overtaking Intention" between times ?t1 and ?t2

Rule Crossing_left_line
If Moving to the left between times ?t1 and ?t2

Crossing the left discontinuous line between times ?t1 and ?t2
Then

State = "Crossing the left discontinuous line" between times ?t1 a

0.01 - 0.22Waiting for overtaking
Overtaking intent

0.22 - 0.58Waiting for overtaking

Time States

75

Waiting for overtaking
Overtaking intention
Beginning of lane changing to the left

0.58 - 0.63Waiting for overtaking
Overtaking intention
Beginning of lane changing to the left
Crossing the left discontinuous line

… …
2.15 - 2.22Passing
2.22 - 2.23Passing
2.23 - 2.51End of passing

Rule Begin_of_maneuver
If A state S has been found between the time t1 and t2

76

This state S is the first state of the maneuver M
The maneuver M has not still be recognized

Then
The maneuver M is in progress between the time t1 and t2 with the stat

0.01 - 0.22 Waiting for overtaking
Overtaking intent

Normal overtaking

0.22 - 0.58 Waiting for overtaking
Overtaking intention
Beginning of lane changing to the left

Normal overtaking

0.58 - 0.63 Waiting for overtaking

77

Wa t g o ove ta g
Overtaking intention
Beginning of lane changing to the left
Crossing the left discontinuous line

Normal overtaking

… … …
2.15 - 2.22 Passing Normal overtaking
2.22 - 2.23 Passing Normal overtaking
2.23 - 2.51 End of passing Normal overtaking

Advantages:
◦ exhaustive generation of states
◦ can easily recognize other kinds of maneuver

Drawbacks:

78

Drawbacks:
◦ recognition of the stages of the manœuvre very

closely related to low-level data -> many states 
may be recognized
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• The overtaking manœuvre may be seen as a succession of stages 
(or states)
– wait for overtaking, beginning of changing lane, ..., passing, 

etc.

79

• The recognition of a stage requires that a certain state has been 
previously detected and that one or more actions have been 
performed

a graph of states

Wait for
overtaking

Signalling of intentWhil EV i f t f TV

Steering wheel to the left

Beginning of overtaking

80

Signalling of intent 
of overtaking

Crossing of the
Left discontinuous line

While EV in front of TV
On the same lane

EV behind TV,
same lane

Data given by sensors

First level

Declarative rules

81

Actions or situation of EV’s driver

Second level

maneuvers recognition rules

Manœuvres recognized ?

Graph

• If, at time t, phi = 0.0 and at time t + 1, phi = -3.0 then consider that the
user has turned its steering wheel to the left

• If, at time t, phi = 0.0 and at time t + 1, phi = +3.0 then consider that the 
user has turned its steering wheel to the right

82

user has turned its steering wheel to the right

• If, at time t, the equipped vehicle has a negative value for y then
consider that it is behind the target vehicle

• If, at time t, y is in [-1.00, +1.00] then both vehicles are on the same
lane

• They are based upon the recognition of a graph

• If there exists a transition between 2 states Ei et Ej, and that its label is
« action A », then we define the following rule :

83

If at time t, the state Ei is recognized, and the action A is detected then consider 

that the state Ej is recognized. Ej becomes the current state.

• (defrule waiting_for_overtaking
(same lane ?t)
(behind ?t)
(rough_data (t ?t) (S ?vS))
(test (>= ?vS 0))
=>

84

=>
(assert (wait_for_overtaking ?t)))

• (defrule signalling_intent_overtaking
(left_warning_light ?t)
?f <- (wait_for_overtaking ?t)
=>
(retract ?f)
(assert (signalling_intent_overtaking ?t)))
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Advantages
◦ low cost : θ(n)
◦ permits to take into account the context/history of 

a situation

85

Drawbacks
◦ extension to other maneuvers : reuse of states?
◦ Abort of the maneuver : how to recognize it?

• Both approaches have to be more experimented on real 
data

• we have to experiment them with other maneuvers

86

• we have to handle the imprecision of real data that have 
consequences on 
– the states to generate in IDRES
– the time at which the graph has to change its current state in 

DSRC, and the choice of the new state to recognize

Belief Petri nets

End of lane changing to the right
Crossing right discontinuous line

Beginning of lane changing to the right
End of passing

87

End of passing
Passing

End of lane changing to the left
Crossing left discontinuous line

Beginning of lane changing to the left
Overtaking intent

Waiting for overtaking

Normal overtaking

0 1.0 2.0 3.0 4.0
Time

Using Belief Petri net

(1) Initial state (2) Left lane change

EV TV TV

89

(3) Overtaking (4) Right lane change

(5) final state

EV

EV

TV TV

TV

PN = <P,T,R,M>

P: the set of places                  M:the marking vector
T: the set of transitions           R: the vector of receptivity

1p 2p 3p
4p 5p

1t 2t 3t 4t

90

Initial state

Left lane change

Overtaking

Right lane change

Final state

LS > 0
SWA > 0

LS small
LA small 

or >0

LS<0
SWA<0

LS small 
LA small
or >0

LS:Lateral Speed, LA:Longitudinal Acceleration, SWA:Steering Wheels Angle
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?21 p or p∈

• State of the system unknown
•The transitions are uncertain

1P

2P

1t

3t

91

The belief Petri net
The theory of evidence

The theory of Petri net
+

2P

3P

2t

The new marking function

{ } { } { } { } { } { } { }{ }321323121321 ,,,,,,,,,,,2 ppppppppppppP =

{ }321 ,, pppP =

1P

PN = <P,T,R,M>
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3P

2t

( ) ( ) ( )∑
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m
kk

kk

k
kk

k
11

1

1p 2p 3p p p
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1p 2p 3p
4p 5p

1t 2t 3t 4t

Initial state

Left lane change

Overtaking

Right lane change

Final state
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97 98

Ignorance of the initial state
Uncertain observations

Belief Petri net

A li ti

99

Application: •Driving assistance system
•Real measurements

Numerical data ? •Truth values
•Logical propositions

Fuzzy logic + evidence theory

Cognitive software 
implementation?implementation?

5 Pentium-4 PCs embedded in the car
◦ Managing analyzing video streams
◦ Computing metrics
◦ Impossible to deploy on large scale
Optimization effortsOptimization efforts
◦ Feedback real time scheduling
◦ Compute only needed metrics according to driving 

situation 

Compute task 
elicitation criteria
Dynamically
modify task
priority

Task T1

Task T2

Task T3

Task T1

Basic 
scheduler

priority
Basic scheduler
doesn’t notice: 
task is scheduled

…

Monitor 

QoS
adaptation 
controller

FEEDBACK!
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Driving
situation

Indicators

Braking
2

TTC
4

Others
5 6 7

Target
Change

1

Indicators

Highly criticalLess critical

Reaction
Time

3

124356

2351467

Changement de 
Situation

7 National_Road_2*1

Driving_In_File

Adaptation to the driving situation

ADAS CommandHVI

EVALUATE
ADAS & DRIVER

Driving situation
detection

Principle: 
◦ Dynamically modify the task priority according to its 

computed results
◦ Example : compute the same metric (Human Factor) 

by two different methods (tasks)

104

Increase the priority of the task (method) that yields a 
‘better’ result
Programmer provides code of both Tasks and their 
evaluation code
SCOOT-R middleware periodically invokes the 
evaluation and adjusts the task priorities

Reducing
computing
ressources 
need
Down to 1 5Down to 1.5 
Pentium-4 PCs

- LOVe project (French gov.)
Multi sensor approach- Multi-sensor approach

- Increase the detection reliability
from 96% to 99%
- 20 partners, 20M€

-Véronique Cherfaoui, Philippe 
Bonnifait
-Heudiasyc Lab, Univ. Tech. 
Compiègne
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Laser-based perception
Cooperation with vision
Partially hidden objects
Road limits detection 

a) Pedestrians and car detection
b) Pedestrians, bus and car detection

[IV2007]

Exemple 

Pedestrian detection (LOVe project) 
Four planes laser scanner
Detection and recognition
Confidence indicators
◦ Detection
◦ Recognition
◦ Tracking◦ Tracking

Pedestrian detection
(LOVe project) 
Four planes laser 
scanner
Detection and 
recognition
Confidence indicatorsConfidence indicators
◦ Detection
◦ Recognition
◦ Tracking

Pedestrian detection (LOVe
project) 
Four planes laser scanner
Detection and recognition
Confidence indicators
updating
◦ Detection

x 1
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◦ Detection
◦ Recognition
◦ Tracking

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31
time

B
et

P 
(%

)

Object Detection
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First experimentations
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Exemple

Vehicle to Vehicle and
Vehicle to InfrastructureVehicle to Infrastructure 
communication
V. Cherfaoui, B. Ducourthial, M. Shawky, P. 
Bonnifait
Heudiasyc Lab, Compiegne Univ. Of 
Technology

satellite 
DMB

GPS

Terrestrial
DMB

cellular
cellular

Portable 
Internet Portable 

Internet

CALM

CVIS

Support of ITS and 
Internet Services 
based on continuous 
communication over 
802.11, GSM, UMTS, 
IR, IPv6, etc.
V2V and V2I 
communication when 
no routing is needed

RSE RSE
5GHz 

Wireless LAN

IR
DSRC

5.8GHz
DSRC

vehicle-to-vehicle
(Wireless LAN or 60GHz) portable-to-vehicle

RSE

RSE-to-RSE

Hot-Spot
(Wireless LAN)

RSE

Car2Car
Communication

SAFESPOT

V2V and V2I 
communication, 
based on geo-
aware multi-hop 
routing

V2V and V2I 
communication for safety 
and traffic efficiency
applications using car2car 
and CALM technologies

no routing is needed

V2V & V2I

Blind Spot
Side

Crash

Cooperative
Warning

Rear
Detection

Blind Spot Crash

Lane Change
Assistance

Lane
Support

Collision
Mitigation

Extended Rear
Detection &
Blind Spot

Infrastructure Based
Warning

Road Side Equipment

Intelligent Cooperative System 

Extended  Safe Distance an
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Some typical use cases: 

Safe lane change maneuvers S f t

EV

EV

EV

EV

SAFESPOT applications will allow the extension of the “Safety 
Margin” that is the time in which a potential accident is detected 
before it may occur (e.g. in static and dynamic black spots, in safety 
critical maneuvers)

Safe lane change maneuvers 
Road departure 
Cooperative situation awareness 
and extended collision warning
Cooperative tunnel safety 
Road condition Information
Cooperative maneuvering
Predictive speed reduction

Safespot

SafeSpot

EV

EV

EV

Cooperate to better perceive
◦ Loose cooperation

Receive information and update your Local Dynamic 
Map

◦ Tight cooperation
Exchange information during the perception process

Initiate cooperative behavior
◦ Reduce speed for lane insertion
◦ Reduce speed at intersection
Distributed « cognition »?

Compute pixels speed in both images 
sequences
Aggregate intelligently
◦ According to speed and “object” size
Determine whether they belong to sameDetermine whether they belong to same 
object
Match objects
Stereo-compute distances
Overall perception enhancement of 20%

LOOSE cooperation

Version 0.2 – 2007-11-26CVIS Core Technology Interfaces
12

5Courtesy of Renault

Goal : 
◦ managing uncertainty (or confidence) of redundant data
◦ taking into account the time management.

Ongoing works : 
◦ Data fusion approach with “believe functions” [Dempster-◦ Data fusion approach with believe functions  [Dempster

Schaefer, Smets]
◦ - believe functions model the uncertainty
◦ - conflict between 2 believe masses is quantified
◦ - decision tools : plausibility, credibility… 
◦ Each node combine with aggregation operators 

(conjunctive)
◦ Attenuation is applied to aging data.
◦
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◦ Using the uncertainty management from redundant
messages in vehicular network in order to maintain a level 
of confidence in information

– Could be added in ad-hoc network protocol 
– Could be applied to dynamic local map
– Could be used as one of security factors
– Managing obsolescence
◦
◦

Framework of hypothesis

All possible hypothesis

Veracity of a hypothesis

Verifying the properties

Focal elements

Credibility function (sum of veracities coming from different sources)

Plausibility function (sum of no doubt)Plausibility function (sum of no doubt) 

Conjunctive sum

Disjunctive sum

Combine veracities from different sources for the same hypothesis

Combining credibility from different
Messages (building up credibility)

Combining credibility from different
Messages (evanishing event)

Message
number

Message
number

Mass distribution in case of aberrant 
message No impact on combination 
(green points)

Message
number
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• All messages are time-stamped
– Message end-of-life has to be managed

• Binary threshold
• Smooth impact (aging)

Using the uncertainty techniques to decrease a message 
relevance in vehicular network 
◦ An old message (and its data) is better than no message (data) at 

all
– Could be added in ad-hoc transmission protocol 
◦
◦

Time decay functions

Start

Yes

No

Message reception M

Compute veracity mj()

Update timestamp

Combination process

Event Credibility combination integrating obsolescence

Message
number

Application 1i

Application 3i

Application 1j

Application 5j

• 2 cases
– Pre-

determined 
priority classes

Application 2i

Received
Messages
stack

Application 4j

Emission 
Messages
stack

priority classes
• Fixed 

number of 
classes

– On-the fly 
relative priority
• Dichotomy 

technique

• Main constraint
– No access to lower control layers

• Multi criteria communication optimization
– Messages priorities (shared radio medium)

• Higher priority of Alert and urgent messages 
Bandwidth consumption– Bandwidth consumption
• Adapt to exchanged messages size or to channel 

occupation, road traffic configuration
• Adapt priorities of all comm. modules

• Feedback to message emission scheduler
– Periodically scan emission/reception stack
– Reschedule by priority or by earliest deadline

satellite 
DMB

GPS

Terrestrial
DMB

cellular
cellular

Portable 
Internet Portable 

Internet

CALM

Cognition Automobile?

Distributed cognition 
versus supervised 
cognition?
System of systems 
research program 
2008-2012

RSE RSE

5GHz 
Wireless LAN

IR
DSRC

5.8GHz
DSRC

vehicle-to-vehicle
(Wireless LAN or 60GHz) portable-to-vehicle

RSE

RSE-to-RSE

Hot-Spot
(Wireless LAN)

RSE

Would these 
techniques survive 
the scaling up factor?
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- 20 % progress in embedded
electronics per year sinceelectronics per year since
2001
- Property verification to 
check safety and 
diagnosability aspects

M. Shawky, M. Khlif
Heudiasyc/CNRS/UTC

non-public presentation,
Project Confidential

28/05/2008
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1

Comparable application
◦ Avionics, but price / unit incomparable!
60 ECUs (Electronic Control Units) on recent
models
Whereas no overall design toolsWhereas no overall design tools
Design approach quite empiric
Car manufacturers are just integrators
Few properties are checked during design 
process

Usually we have only
the functional model
◦ Formal or not, timed or 

not
◦ Expressed in Simulink, 

matlab, etc.
Enrich this model withEnrich this model with
architectural 
information
◦ I/O (linked to sensors, 

actuators)
◦ Distribution on 

computing units
◦ Communication between

ECUs

28/05/2008
14

3

Sub-system 
co-modeled with a “g” 

granularity level   
s-f 1.2 

s-f 2.3

s f 3 1

ECU1

ECU 2

ECU 3

A fault

28/05/2008
14

4

Functional
model

Hardware 
description 

model

The 
source of fault

s-f 3.1.
.
.

ECU 3
.
.

Functional
models

Hardware 
description 

models
interfaceSW HW

Multilevel of Granularity 
HW/SW co-models

(e.g. SystemC)

28/05/2008
14

5

Diafore 05/11/07

Co-simulation

System observation
for diagnosis

Hardware-software 
co-models



28/05/2008

25

We started with
◦ Degree of observability of

I/O, memory variables
Internal system state

Other metrics should be added?

14
6

Observability rate = 1- Occupation duration/ Cycle 
duration

Starting from simulink
Convert to SystemC or any
ADL (Architecture  
Description Language) to 
include architectural 
information
Analyse the obtained
model to assess the

HW/ SW 
SystemC
Model

Co-
simulation 

Vcd
trace 
file

model to assess the 
diagnosability metrics
◦ Unwind the execution-

operation
◦ Associate to architecture 

modules
◦ Compute the time slots to 

external access to I/Os
◦ Compute « observability » 

degree

28/05/2008
14

7

Trace file
Parsing

Observability
rate

System
Obervation

(with HW 
information) If 

suffi
cient

If observability degree not sufficient
◦ Determine what are the additional I/O external

cycles to add to observe
Needed I/O
Internal states
Memory variables

Undergoing and future work
◦ Determine the accessibility to I/O values by network

Define « reachability » degree via CAN network

28/05/2008
14

8 28/05/2008
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M. Shawky
University of Technology of Compiègne, France

Heudiasyc laboratory, Join Research Unit with CNRS
On behalf of the Intelligent Vehicle Team 

Philippe Bonnifait, Ali Charara, Véronique Cherfaoui, Paul Crubillé, Gérald Dherbomez, Bertrand Ducourthial

www.hds.utc.fr


