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Which title?

» Environment for Cognitive automobile
- Better Title:

» Methodologies and Techniques for Cognitive
Automobile applications

» Application oriented selection of
methodologies and techniques

» Project oriented vision (French, German and
European)

Automotive industry

» Situation in France:
> 35 million vehicles
> 4 million employments (direct or indirect)
= Market in XXBE, £, $
» Passionate relation with « my » car
> Would may vehicle remain so dum?

» Intelligent Transportation Systems

» IEEE ITS group, IEEE trans. For ITSC, trans. for
Vehicular Technology

outline

» Orientations of research in automotive field

> Automatic driving versus Advanced Driving Aid
Systems

» Environment perception
= Sensors, data fusion, etc.

» Driver behavior assessment
> Driving situation awareness

» Cooperative cognition
- Distributed approach

Evolution of “automation”
approaches M
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Automatic driving versus driving
assistance

» « An ultimate artificially designed cognitive
system should include a human operator »

Simon Haykin, McMaster Univ.
Dynamic Cognitive Systems Workshop,
Niagara-on-the-Lake,
May 26-29, 2008
» Research works nearly abandoned automatic
driving for driving assistance
> Do not replace driver, but assist him
» Introduction of ADAS
> Advanced Driving Aid System




28/05/2008

L @ Contribution
& &
£ & X
& Complesity
& .o
=

Autonomous Driving
Platooning
Obstacle & CA
Urban Drive Assistant
Rural Drive Assistant
Obstacle & Collision Warning
Lane Change Assistant
Roll Stability Control in Trucks
Lane Keeping Assistant
Stop & Go
Extended ACC
Curve Speed & Speed Limit Info
Near field Collision Waming
Lane Departure Warning
Night Vision

Radar ACC

Figure 2: “Distronic™ ACC radar for Mercedes (source: www.daimlerchrysler.de)

Figure 4: ITERIS "Auto-vue” Lane Warning system (source: www.iteris.com)

Figure 3: Night Vision system on Cadillac Deville (source: www.cadillac.com)

second generation ADAS

» Semi-automatic parking
> helps the driver in penetring into a parking slot in a parallel
manceuvre
- by automatically acting on the steering wheel
- driver is acting only on the pedal with the reverse gear inserted
- In camera is controlling the motion of the vehicle
» The pre-crash systems
- announced by Toyota and Honda
> reduce the negative effects of an accident
+ acting on the pretensioner of the safety belts before the acident
- occurs and to reinforce driver pressure on the brake pedal in
case of an imminent collision.
» Tendency
> introducing functions more directly related to safety than to
comfort, such as ACC.

European research program
Adase Il

» System Aspects
To deal with complexity of the controller algorithms.
» Sensor Aspects
Key technologies to detect the environment and the surrounding

traffic
- Radar, lidar or video image processing
- Data fusion

» Infrastructure (incl. Communication v2i)
- Measure for street construction (e.g. brightness of lane
markers
- Technical devices (e.g. light warning system)
- Communication between infrastructure and vehicles
» Communication v2v
> Vehicles network dimensioned to assistance system (e.g.
concerning range).
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Adase Il EU integrated projects (700 M€)

» HMI Aspects
= The HMI gives the driver the feedback of the system activities or
available information. Further aspects related to this topic are
user acceptance and learn ability.
> Technology roadmap ADASE 01.10.03
> Deliverable D2D (Draft) Version 1.0 4
» Degree of Driver Assistance
< The degree of driver assistance represents the different stages of
driver support(e.g. information, warning, support, autonomous
intervention). The more of the driving task is done by the system,
the less the driver himself has to fulfill this task. This aspect is
strictly connected with HMI, legal and system aspects.
» Legal Aspects
= As some of the assistance systems can possibly overtake certain
aspects of the control of the car, it becomes more and more
necessary to think about the legal aspects concerning liability of
the manufacturer, the car owner and the driver. The responsibility

of the driver will be questioned depending on the degree of driver 3 % £
assistance. g i ; g
2 z i

Research areas

Roadsense UE project

ADAS usefulness Objectives
assessment

3% Impact on Driver behavior

Develop a methodology of assessing the
efficiency of the new driving assistance
systems

Multi-disciplinary work

{Human Factors + Techno}

Develop technological tools to set up this
methodology

Definition of DBITE

(Driver Behaviour Interface Test Equipment)

Metrics for driver behaviour DBITE equipment

Tabie 1. Mumber of selected matrics

NB of found | NE of selected |  NB of sslected
metrics metrics with target
values
Lateral contral 14 8 3 |
Visual scens managemant 12 5 5
Longiudinel control 3 2 2 80 GB/hour
Intaractions with ciher vehicles 13 5 1
uation awareness 1 7 o |
S — 24 8 o |
river physiciogicel status s o o | e

Pedals
position
sensors

Among 82 metrics found in the litterature, 45 have been selected for real road
situations experiments
Example:
» Lateral control
»  Number of major line deviation
» Steering wheel position variance
» Steering wheel reversals rate
» Time to Lane Crossing (TLC)
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ADAS assessment

» Experiments with tens of drivers
> With the new ADAS
> Without the new ADAS

» Record all vehicle sensor data and videos
during test sequence

» Post-synchronize data at 1 ms resolution
» Compute off-line all metrics
» Assess usefulness

Results

» Renault use case

> ACC, Adaptive Cruise Control, radar to detect TTC
and action on breaks

» Porsche use case
> Night Vision System using a Head Up Display,

projected image overlays the real scene on widescreen
» PSA Peugeot Citroén use case
> Hypo vigilance detection camera

Following step: ADAS in close
loop :

Sensor
data ADA_S
processing activation
Sensor Assess
data driver acfi\?aﬁison
processing behavior

yd

» Evaluate metrics in real time

» Assess
= Opportunity of ADAS activation
> Moment of activation and desactivation

» Need to have a high level awareness of
driving situation

Data fusion for driving
situation characterization

Véronique CHERFAOUI
Heudiasyc Lab - UTC (France)

Experimental
Vehicle :

STRADA

Telemeter

Cameras
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Perception architecture

Situation
characterization [ ™~
7 Data
Data /‘ fusion
fusion \
Signal/image | | Signal/image Signal/image
processing
L

processing processing
¥ T

Physical
sensor

Physical
sensor

Physical
sensor

Data fusion for driving situation
characterization M. Rombaut, V. Cherfaoui

25

For a particular application

» What objectives to reach?
» What information to get?
- Front vehicle following: position and speed of the
front vehicle (accuracy: position 20cm, speed 5km/h)

= Overtaking assistance: existence of a rear left
vehicle (no vehicle: 100%, a vehicle 90%)

» Characterization of the data:
accuracy, reliability, frequency, delay

DRIiVE : Data reduction and
analysis  Michéle Rombaut

Objectives

» take advantage of redundancy of data to
increase the accuracy and the reliability

» take advantage of the complementary data to
access to a higher level of interpretation

Data fusion for driving situation
characterization M. Rombaut, V. Cherfaoui

27

Definition of accuracy

» Estimation of the difference between the
measure /17 from the sensor and the real
unknown value X'to measure

» Ordered and continuous space of definition
Q0

e Q

||
N .
X m

Data fusion for driving situation
characterization M. Rombaut, V. Cherfaoui

Example

The distance between the experimental vehicle

and the front vehicle (target) is 23m more or
less 60cm

This means :

The real value X of the distance is in the
interval /22,4m [ 23,6m]

Data fusion for driving situation
characterization M. Rombaut, V. Cherfaoui 29

Accuracy modeled by probabilities

p(x/m). probability that X = x, if the
measure is m

Gaussian distribution : mean /m, variance o

>

m X X

Data fusion for driving situation
characterization M. Rombaut, V. Cherfaoui

30
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Accuracy modeled by fuzzy sets S‘f;gr?cy modeled by evidential

7,(x): possibility that X = x, if the measure is m
The membership function u,,(x)= 7,,(x) is
defined by an expert

» The space of discernment is the set 22 of the
subsets A, of ©

» m,(A;)is the evidence that Xis in A; if the
measure is m

Hm(X)

I

I

I

I

I

I

I

i
m X X

zation M. Rombaut, V. Cherfaoui 31

Data fusion for driving situation
characterization M. Rombaut, V. Cherfaoui 32

Accuracy modeled by evidential . . T
Y y Definition of reliability
theory
» Estimation of the confidence in an hypothesis
H;
m(A) » Discrete and non-ordered space of definition
| ma,) @
LA
N - Hy
| A,
| | m(A,)
m X X
Example Data processing
S /—/] : the target is a car > Temporal data fusion
» H,: the target is a truck » Fusion of redundant data
BB target is a motorbike » Fusion of complementary data

» Symbolic characterisation of the situations

»

Data fusion for driving situation DRIIVE : Data reduction and
characterization M. Rombaut, V. Cherfaoui 35

analysis  Michéle Rombaut 36
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Temporal data fusion

» The experimental vehicle (EV) moves in the
static environment

» Other vehicles around the experimental
vehicle move too.

» The information, true at time t, becomes false
attime t+ A ¢

» Need to time stamp the data (different delays
and frequencies)

DRIiVE : Data reduction and
analysis  Michéle Rombaut 37

Example of data evolution

DRIiVE : Data reduction and
analysis  Michéle Rombaut

Data evolution

» Use of the model evolution (a priori
knowledges)
Vt+At = yAt+ v ()
X(A+A)=1/2yA2 + (vt +A0)-v(E)AL+ x (L)
» Based on the Kalman filter
» Target following algorithm
> line following
> multi-vehicles following

DRIIVE : Data reduction and
analysis  Michéle Rombaut 39

Fusion of redundant data

» Simultaneous observations of the same object
» Improve the accuracy
» Few redondant data because of the lack of

sensors

X

camera 2

DRIIVE : Data reduction and
analysis  Michéle Rombaut

40

Fusion of complementary data

» Same object, different types of data
» Different objects
» Increase the knowledge on environment

X

telemeter (X,2)

DRIIVE : Data reduction and
analysis  Michéle Rombaut 41

Fusion of complementary data

DRIIVE : Data reduction and
analysis  Michéle Rombaut

42
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Symbolic characterisation

» Data interpretation
» Definition of the symbolic models
» Use of a priori knowledges

1:-0,75m
2:+0,80m EV on the right lane

DRIiVE : Data reduction and
analysis  Michéle Rombaut 43

The numeric/symbolic conversion

N H(X)

,uluw(m
low middle high

Hniddie(M

X v

Data fusion for driving situation
characterization M. Rombaut, V. Cherfaoui

44

maneuver recognition

» Temporal sequence of situations

» Example of maneuver: the overtaking

DRIIVE : Data reduction and
analysis  Michéle Rombaut a5

Overtaking

State :
Top view

Front camera Rear camera

/

L

DRIIVE : Data reduction and
analysis  Michéle Rombaut

(\/>.<\}
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State : approach
Top view

{ ——— -
——

Rear camera

L

DRIIVE : Data reduction and
analysis  Michéle Rombaut 47

Front camera

State : approach
Top view

Rear camera

L

DRIIVE : Data reduction and
analysis  Michéle Rombaut

Front camera

(\/>.<\.}

48




28/05/2008

State : approach

Top view

( e -
——

Front camera

Rear camera

il

DRIiVE : Data reduction and
analysis  Michéle Rombaut 49

State : approach

Top view

Rear camera

il

DRIiVE : Data reduction and
analysis  Michéle Rombaut

)

Front camera

State : approach

Top view

( e e
———

Front camera

Rear camera

L

DRIIVE : Data reduction and
analysis  Michéle Rombaut 51

State : lane change

Top view

i /.Q

——

Front camera

Rear camera

N

DRIIVE : Data reduction and
analysis  Michéle Rombaut

State : lane change

Top view

\ I

— —
Front camera Rear camera
DRIIVE : Data reduction and
analysis  Michéle Rombaut 53

State : overtake

Top view

-

{
[ -

Front camera Rear camera

\/

DRIIVE : Data reduction and
analysis  Michéle Rombaut
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State : overtake

Top view

- >

Front camera

Rear camera

/

DRIiVE : Data reduction and
analysis  Michéle Rombaut 55

State : overtake

Front camera

Top view
\ - >
— —
Rear camera
DRIiVE : Data reduction and
analysis  Michéle Rombaut 56

State : lane change

Top view

|

e )

Front camera

B

— ]
Rear camera
DRIIVE : Data reduction and
analysis  Michéle Rombaut 57

State : lane change

Top view

{

Front camera

4

Rear camera
DRIiVE : Data reduction and
analysis  Michéle Rombaut 58

State : move away

Top view

Front camera

— - —

Rear camera

/

DRIIVE : Data reduction and
analysis  Michéle Rombaut 59

State : move away

Top view

Front camera

/

Rear camera

DRIIVE : Data reduction and
analysis  Michéle Rombaut 60

10
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State : move away

Top view

(\./>.<\}

Front camera

Rear camera

DRIiVE : Data reduction and
analysis  Michéle Rombaut 61

State : move away

Top view

\#/>.<\}

Front camera

Rear camera

/

DRIiVE : Data reduction and
analysis  Michéle Rombaut 62

State :

Top view

)

Front camera

Rear camera

£ L

DRIIVE : Data reduction and
analysis  Michéle Rombaut 63

The data fusion in CASSICE project

» Data integration : the architecture
» Data fusion : the methods
» The general problems :
> the dating
- the spacial and temporal re-referencing
> the matching process
> the numeric/symbolic conversion

Data fusion for driving situation
characterization M. Rombaut, V. Cherfaoui 64

Modeling techniques in CASSICE

» The accuracy is modeled by fuzzy sets
» The matching process needs a decision

» The reliability is modeled by a distribution

of mass of evidence on the different

hypotheses

Data fusion for driving situation
characterization M. Rombaut, V. Cherfaoui 65

m(.)

distance

Data fusion for driving situation
characterization M. Rombaut, V. Cherfaoui 66

11



28/05/2008

General conclusions

» model the accuracy of the reports

» model the reliability of the reports and the
decisions

one or several formalisms must be chosen
in order to ease the data processing

» define the fusion architecture

» the spatial and temporal re-referencing

» choose the matching algorithms

» choose the fusion algorithms

Data fusion for driving situation

High-level interpretations of
driving situations

33 Sophie LORIETTE-ROUGEGREZ
Jean-Marc NIGRO
Université de technologie de Troyes
Laboratoire LM2S
TROYES - France

Veéronique Cherfaoul
Université de Technologie de Compiégne
Laboratoire Heudiasyc
COMPIEGNE - France

characterization M. Rombaut, V. Cherfaoui 67 68
- Raw data
Objectives
Time| X Y S | Teta| Acc | Phi Rg Rd
0.01/-32.00 0 [15] O 0 0 [-3.50 1.50
0.02|-31.85 0 15| 0 0 0 -3.50] 1.50
0.03/-31.70 0O 15| 0 0 0 -3.50] 1.50

T.12] -15.52-2.01 15| -0.91 0 | 3 | -1.46 3.54
T.13] -15.37-2.04 15| -0.68 0 | 3 | -T.44 3.56
1.14| 15.20-2.04 15 9.4 0 | 3 | -1.41_3.59

Data obtained from the experimental vehicle

Time| Clock ( s)
Acc | Acceleration of EV relative to TV (meters?/second
Front wheel angle of EV (in degrees)
Position of EV against the left road side (meters)
Angle of the target TV ( degrees

Speed of EV relative to TV (meters/second)

Position on the x's axis of TV against EV (meters, X
Position on the y's axis of TV against EV (meters

Recognition of the overtaking
manouvre : 2 approaches

» Exhaustive generation of states, then choice of
the best manceuvre IDRES approach

» contextual recognition of the overtaking
manceuvre

DSRC system

States of the overtaking manouvre

. Overtaking intention

. Begining of lane changing to the left

. Crossing the left discontinuous line

. End of lane changing to the left

. Passing

. End of Passing

. Beginning of lane changing to the right
. Crossing the right discontinuous line

. End of lane changing to the right

OWoONOOUVTA WN —

12
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The IDRES approach

Data given by sensors

First level l
Declarative rules

List of ;ossible states
Second level f List of maneuvery

maneuver recognition rules

!

List of possible maneuvers

The first level {(declarative rules)

Rule Waiting_for_overtaking
If £V and TV same lane between times ?t1 and ?t2
EV behind TV between times ?t1 and ?t2
Then
State = "Waiting for overtaking” between times ?t1 and ?t2

Rule Overtaking_intention
If Fast coming from EV to TV between times ?t1 and ?t2
Then

State = "Overtaking Intention" between times ?t1 and ?t2

Rule Crossing_left_line
If Moving to the left between times ?t1 and ?t2
Crossing the left discontinuous line between times ?t1 and ?t2
Then
State = "Crossing the left discontinuous line" between times ?t1

Resulis obtained from the 1t level
rules

Time States

aiting for overtaking
Overtaking intent
aiting for overtaking
Overtaking intention
Beginning of lane changing to the Igft
aiting for overtaking
Overtaking intention
Beginning of lane changing to the Idft
Crossing the left discontinuous line

0.58 - 0.

2.15 - 2.4Passing
2.22 - 2.4Passing
2.23 - 2.5End of passing

2"d_level rules

Rule Begin_of_maneuver

If A state S has been found between the time t1 and t2
This state S is the first state of the maneuver M
The maneuver M has not still be recognized

Then
The maneuver M is in progress between the time t] and t2 with the std

Results of the 274 |level rules

0.01-0.22 |Waiting for overtaking Normal overtaking
Overtaking intent
0.22-0.58 |Waiting for overtaking
Overtaking intention Normal overtaking
Beginning of lane changing to the left
0.58-0.63 [Waiting for overtaking

Overtaking intention Normal overtaking
Beginning of lane changing to the left
Crossing the left discontinuous line

2.15-222 |Passing Normal overtaking
222-223 |Passing Normal overtaking
223-251 |End of passing Normal overtaking

First assessment
» Advantages:
- exhaustive generation of states

- can easily recognize other kinds of maneuver

» Drawbacks:

> recognition of the stages of the manceuvre very
closely related to low-level data -> many states
may be recognized

13
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DSRC approach

- The overtaking manceuvre may be seen as a succession of stages
(or states)
- wait for overtaking, beginning of changing lane, ..., passing,
etc.

The recognition of a stage requires that a certain state has been
previously detected and that one or more actions have been
performed

- a graph of states

Overtaking mancsuvre
recognition graph

Beginning of gvertaking

Waitfor
overtakin

i i Signalling of intent
On the satfie lane of overtaking .

Crossing of the

Left discontinuous ling

The DSRC approach

Data given by sensors

First level l
Declarative rules

Actions or situa{ion of EV’s driver
Second level l

rs
maneuvers recognition rules

!

Manceuvres recognized ?

1st-level rules

« If, at time t, phi = 0.0 and at time t + 1, phi = -3.0 then consider that the
user has turned its steering wheel to the left

« |If, attime t, phi = 0.0 and at time t + 1, phi = +3.0 then consider that the
user has turned its steering wheel to the right

« If, at time t, the equipped vehicle has a negative value for y then
consider that it is behind the target vehicle

« |If, at time t, y is in [-1.00, +1.00] then both vehicles are on the same
lane

2nd |evel rules

« They are based upon the recognition of a graph
* If there exists a transition between 2 states E; et E;, and that its label is

« action A », then we define the following rule :

If at time t, the state E; is recognized, and the action A is detected then consider

that the state E; is recognized. E; becomes the current state.

2nd |evel rules

* (defrule waiting_for_overtaking
(same lane ?t)
(behind 2t)
(rough_data (t ?t) (S ?vS))
(test (>= 2vS 0))
=
(assert (wait_for_overtaking ?t)))

« (defrule signalling_intent_overtaking
(left_warning_light ?t)
2f <- (wait_for_overtaking ?t)
=
(retract 2f)
(assert (signalling_intent_overtaking ?t)))

14
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First assessment Results
IDRES or DSRC ?

» Advantages

> low cost : 6(n) - Both approaches have to be more experimented on real
> permits to take into account the context/history of data
a situation

we have to experiment them with other maneuvers

» Drawbacks : B
. h . £ 5 « we have to handle the imprecision of real data that have
o extension to other maneuvers : reuse of states/ consequences on

> Abort of the maneuver : how to recognize it? _ the states to generate in IDRES

- the time at which the graph has to change its current state in
DSRC, and the choice of the new state to recognize

Belief Petri nets

IDRES
Experimentation results

High-level interpretations of

End of lane changing to the right ] ‘ d riVi n g Situa‘tions
B cioncing o e rore 1F 33 Using Belief Petri net

Beginning of lane changing to the right
End of passing. -
Passing -
End of lane changing to the left “
Crossing left disconti line
Beginning of lane changing to the left .
Overtaking intel

Waiting for overtaking

High-level interpretations of Modelisation of the overtaking
driving situations maneuver with a Petri net
PN = <P, T,R,M>
P: the set of places M:the marking vector
--------------------------- ? - T: the set of transitions R: the vector of receptivity
- - i ) )

(1) Initial state (2) Left lane change /_1\ t1 n /‘_2\ tz H /% ts 0 /94\ t4 ﬂ /E%
______________ _-- ______________~____ Initial state 1 Overtaking y  Final state
__________ -.______ _________-_______ :__f_eftlanechange"‘u :""RightIanechan-g_e-__:

(3) Overtaking (4) Right lane change LS > 6I LS smalll' 1LS<O L‘é small

SWA >0 LA small SWA<O0 LA small
———————————————————— or >0 or >0

sLateral Speed, LA:Longitudinal Acceleration, SWA:Steering Wheels Angle

(5) final state

15
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Problem

- State of the system unknown
- The transitions are uncertain

The theory of Petri net

The belief Petri net
* The theory of evidence

91

The belief Petri net
PN = <P, T,R,M>

P={p. .. .}
C 2" ={{p} D, J APa APy, P2} APss D3} P20 Do) Dy sy Ps))

The new marking function

m*:2% - [01]

> mk(A)=1

AcP

First step

* The transitions are sure ||- R¥ = [O,]_,O]T
* The initial state, at time k, mk({ [ pz}) =0.6, m ({pz, p3}) =0.3

R m*({p, p,. p,})=0.1

L
A %
5
P,

{py, p,}—orel

{
{p,, p}—Lorel

Do
pa}

{Py, Par Py} 222 5 {p )}

Uncertain knowledge of transitions

The frame of discernment:

Q={01

ti Isfalse  _y R ik,l =m ik ({0 })

ti Is true >S5 R ik,2 -m ik ({1})

ti Is false ortrue  _y R ik,3 =m ik ({O ,1})

The vector of receptivity: Rk = [R«kl, R,kz , R‘k3:|
i1 2 sl oy g

[0 09 01
R R“={03 0 0.7]
4 |0 04 06
[ P, m¥({p.}/{p,J) = mi ({0}) = 0.9

| i ()=t (02 =01
b
m’ k+1 _ k+% A "
R"—)mmk}_)m (A)=2m (é)m (B)

Example of simulation

pl [1 pZ [2 p3 [3 p4 [4 p

Initial state Overtaking Final state

Right lane change

Left lane change

16



28/05/2008

Place P1"

1 2 3 4 5 6 7 8 9

Place P2

e T 1
2
05f . . 1
o i . i L
1 2 3 4 5 6 7 8 9
15 : T r T T T
P3,P5
iL J
£
H
05} 1
o i . i L i i i . i
1 2 3 4 5 6 7 8 9
15 | ! ' . ! . . .
P4,P5
1k J
2
H
05t : : 1
1 2 3 4 5 6 7 8 9
Jime:

Conclusion
» Ignorance of the initial state

» Uncertain observations
} Belief Petri net

Application.  .Driving assistance system
-Real measurements

4 -Truth values

Numerical data : ol
e—=— .| ggical propositions

Fuzzy logic + evidence theory

Real time implemention

23 Cognitive software
implementation?

Processing needs

» 5 Pentium-4 PCs embedded in the car
> Managing analyzing video streams
o Computing metrics
> Impossible to deploy on large scale
» Optimization efforts
> Feedback real time scheduling

> Compute only needed metrics according to driving
situation

Dynamic modification of priorities
according to criteria

» Compute task
=

elicitation criteria
» Dynamically

Basic
scheduler

modify task
priority [
» Basic scheduler
doesn’t notice: w2 7m
task is scheduled contoller

FEEDBACK!

17
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Adaptive Advanced Driving 418 System
5th EY Koadsemsh

Priority Semantic

Indicators

» Principle:
> Dynamically modify the task priority according to its
computed results

> Example : compute the same metric (Human Factor)
by two different methods (tasks)

Natinalfoad 27 « Increase the priority of the task (method) that yields a
\ ‘better’ result
Gosl. ToPrioritise matr s in o siustions - Changement de . A
e 1 1 Siuation - Programmer provides code of both Tasks and their

T m e evaluation code
= - SCOOT-R middleware periodically invokes the
l evaluation and adjusts the task priorities

g b0 the driving situation

Precedence rules Resulis
FEEEEE = S A T
| L] (o [ v [l | o | | L :
B> = Tl |

Activation frequency wrt canfidence

coefficient

» Reducing
computing . .
B Lirces I — Pedestrian Detection
need ® 33 - LOVe project (French gov.)

» Down to 1.5
Pentium-4 PCs

Multi-sensor approach

- Increase the detection reliability
from 96% to 99%

roq (activationsis) and conf (%)
& 8 8

LZZ ey e - 20 partners, 20M€
i PRI -Véronique Cherfaoui, Philippe
Time ) Bonnifait
Heudiasyc Lab, Univ. Tech.
Compiegne

18
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»

»

»

»

Cretection and tracking in driving situation

Laser-based perception
Cooperation with vision
Partially hidden objects -
Road limits detection

a) Pedestrians and car detection
b) Pedestrians, bus and car detection

[IV2007]

Detection and tracking in driving situation

» Exemple® oo

»

»

»

Detection angd fracking in driving situation

Pedestrian detection (LOVe project) 2 A
Four planes laser scanner L) ;

Detection and recognition
Confidence indicators

Detection
Recognition

Tracking
Tracking

Detection angd tracking in driving situation

Pedestrian detection
(LOVe project)
Four planes laser
scanner
Detection and
recognition
Confidence indicators
Detection
Recognition
Tracking

Detection and tracking in driving
situation

Pedestrian detection (LOVe
project)

Four planes laser scanner
Detection and recognition

Confidence indicators
updating

Detection

Recognition

Tracking

[

VAL I
VAl 7 7
WAV \

Detection and tracking in driving
situation
» First experimentations
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Data from Renault vehicle real
Sensors

Detection and tracking in driving
situation
» Exemple

Cooperative ‘cognition’

33 Vehicle to Vehicle and
Vehicle to Infrastructure
communication
V. Cherfaoui, B. Ducourthial, M. Shawky, P.
Bonnifait
Heudiasyc Lab, Compiegne Univ. Of
Technology

Bigger picture

[cav]

Support of ITS and
Internet Services
based on continuous
communication over
802.11, GSM, UMTS,
IR, IPv6, etc.

V2V and V2|
communication when
no routing is needed

V2V and V2I Car2Car

c ication, C ation
based on geo- T =3
aware multi-hop il e e
routing

LY V2V and V2l
LA communication for safety
and traffic efficiency
applications using car2car
and CALM technologies

Vv

Side
i Crash

.Dfst_e_x_nkje al

Extended Rear 3
Detection
_' ind Spot
Lane Ch;

Infrastructure Based
Warning

Road Side Equipmen
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SAFESPOT applications will allow the extension of the “Safety
Margin” that is the time in which a potential accident is detected
before it may occur (e.g. in static and dynamic black spots, in safety
critical maneuvers)

Some typical use cases:

Safe lane change maneuvers
Road departure st
Cooperative situation awareness (=2

and extended collision warning

Cooperative tunnel safety
Road condition Information
Cooperative maneuvering
Predictive speed reduction

Cooperative approach

» Cooperate to better perceive
> Loose cooperation
+ Receive information and update your Local Dynamic
Map
> Tight cooperation
- Exchange information during the perception process

» Initiate cooperative behavior
> Reduce speed for lane insertion
> Reduce speed at intersection

» Distributed « cognition »?

Tight cooperative perception

Comparison of optic flows

» Compute pixels speed in both images
sequences

» Aggregate intelligently
> According to speed and “object” size

Natarming whatha
» DELEINMINE wrnewne

object
» Match objects
» Stereo-compute distances
» Overall perception enhancement of 20%

LOOSE cooperation LOCAL DYNAMIC MAP @T

The target is the
representation of vehicle's
surroundings with all static

and dynamic safety relevant
elements

Com. nodes, f/"
fusion result_/
5(

Temporary Ny 5 2
regional inﬁ:\/ 7

L
Landmarks for
referencing -/ / e
), g -ci
L. e LB
Map from g current view to be refined
provider N during the project .E
Lk, T Courtesy of Renault

Data uncertainty management

» Goal :
© managing uncertainty (or confidence) of redundant data
- taking into account the time management.

» Ongoing works :

- Data fusion approach with “believe functions” [Dempster-
Schaefer, Smets]

° - believe functions model the uncertainty

° - conflict between 2 believe masses is quantified

° - decision tools : plausibility, credibility...

> Each node combine with aggregation operators
(conjunctive)

> Attenuation is applied to aging data.

21



28/05/2008

Redundant data management

> Using the uncertainty management from redundant
messages in vehicular network in order to maintain a level
of confidence in information

- Could be added in ad-hoc network protocol
- Could be applied to dynamic local map

- Could be used as one of security factors

- Managing obsolescence

Theary of evidence (Dempster, Schasfer)

Framework of hypothesis
@ ={HiHx }

All possible hypothesis
P=A{ACE} =@ H.-HHUH - @}
Veracity of a hypothesis
e 2% [001]
Verifying the properties

ihmg () =0

i) Z ma(A)=1

Focal elements
No={A 2%/ me(A)=0}

Credibility and Plausibility

Credibility function (sum of veracities coming from different sources)
Cre:2°— [0,1]

Cro(A)= 2me(B)

Pla - 2% = [0,1] avec Plo (A)= 1 - Cra (A)

Pla(A)= 2 me(B)

A Be

Dempster combination laws

Combine veracities from different sources for the same hypothesis

Conjunctive sum

mg(A)= Zn%(,—\)-m;;’(BJ]
A,~B,=

A

Disjunctive sum

my(A)= > mg(a)-mg(B)

AB=A

Combining credibility for different messages

Message o
number v oz 31 a4 % 4 T % 4

Combining credibility from diffe e
Messages (evanishing event)

Combining credibility from different
Messages (building up credibility)

ge

r

Filtering capacity of aberrant message

F 2 T T B & 8w
[
a8 1]
o
(AN T B A A ]
s )
P " .
' 1 4 & & 7 & 8 0m

L
Message
! number

Mass distribution in case of aberrant
message No impact on combination
(green points)
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Time management for messages

- All messages are time-stamped
- Message end-of-life has to be managed
- Binary threshold
- Smooth impact (aging)

Using the uncertainty techniques to decrease a message

relevance in vehicular network

> An old message (and its data) is better than no message (data) at
all

- Could be added in ad-hoc transmission protocol

Time decaying functions

Time decay functions ~

Fig 3 oom e Fgsko
LR

Combination process

Scheduling message stacks
Credibility combination with obsclescence
| Application Ti Application 1j
! Application 3i Application 5j
i . 2cases
by —>| B PrE7
i determined -
: 4 priority classes
i Emission -+ Fixed Received
. Messages number of Message
(«) stack classes stack
- On-the fly
: relative priority L <
Message Application 2i . Dichotomy Application 4j
technique
Event Credibility combination integrating obsolescence
End to end messages priorities to avoid Cognition Automobile? <
congestion oS

- Main constraint
- No access to lower control layers
- Multi criteria communication optimization
- Messages priorities (shared radio medium)
- Higher priority of Alert and urgent messages
- Bandwidth consumption
- Adapt to exchanged messages size or to channel
occupation, road traffic configuration
- Adapt priorities of all comm. modules
. Feedback to message emission scheduler
- Periodically scan emission/reception stack
- Reschedule by priority or by earliest deadline

» Distributed cognition

versus supervised

cognition?

System of systems

research program

2008-2012

» Would these
techniques survive
the scaling up factor?

Terrestrial
(i

)

i
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Embedded computing in
vehicle

33 - 20 % progress in embedded
electronics per year since
2001
- Property verification to
check safety and
diagnosability aspects

Diagnosability assessment on

functional/architectural level

M. Shawky, M. Khlif
Heudiasyc/CNRS/UTC

non-public presentation,
Project Confidential

28/05/2008

Embedded computing units

» Comparable application
= Avionics, but price / unit incomparable!

» 60 ECUs (Electronic Control Units) on recent
models

Whavrane e arall Adacicm nlp

» Whereas no overall dcalyn tooIs
» Design approach quite empiric
» Car manufacturers are just integrators

» Few properties are checked during design
process

Mixed functional and architectural
model

» Usually we have only
the functional model .
> Formal or not, timed or ==

not ==
> Expressed in Simulink,
matlab, etc.

» Enrich this model with
architectural
information
> 1/0 (linked to sensors,

actuators)

Distribution on

computing units

> Communication between

CUs

28/05/2008

Co-moadeling granularity and
supervision accuracy relationship

Sub-system
m!@‘ """" "lco-modeled with a “g” |* ™77 7" o Afault
2 = ECU2 granularity level e
3.1 |

A
Functional Hard_wa_re ________ d The
et description ource of faul
model

28/05/2008 4

HW/SW Co-modeling

i Hardware
Functional - wal
models | sw interface }(—>| Hw | de?rt]:gg(tellzn

Multilevel of Granularity |
HW/SW co-models 1
(e.g. SystemC) i

Hardware-software
co-models

l

Co-simulation

I

System observation
for diagnosis

28/05/2008
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Diagnosability metrics from
system architecture viewpoint )

» We started with » Starting from simulink =

. » Convert to SystemC or any |pw, sw Ved |*

> Degree of observability of ADL (Architecture ) SystemC ‘ Co- ’ trace |4

. i Description Language) to | Model file |

R cmory variables include architectura ™

- Internal system state information i

Analyse the obtained J

] model to assess the l

» Other metrics should be added? diagnosability metrics

= Unwind the execution-

operation e

= Associate to architecture lObervation| h Dbservability . Trace file

modules (with HW. rate Parsing

- Compute the time slots to | @

external access to 1/0s cient

- Compute « observability »
degree

Diagnosability & co-modelling

28/05/2008 7

Assessment of results Platform

» If observability degree not sufficient
- Determine what are the additional 1/0 external
cycles to add to observe e
- Needed |/0 o IH--—: =3
- Internal states
- Memory variables L= 7
» Undergoing and future work 1
> Determine the accessibility to I/0 values by network :
- Define « reachability » degree via CAN network i — ] -I

28/05/2008 8 28/05/2008 9

Methodologies and
Techniques for Cognitive
Automobile applications

M. Shawky

University of Technology of Compiégne, France
Heudiasyc laboratory, Join Research Unit with CNRS
On behalf of the Intelligent Vehicle Team

Philippe Bonnifait, Ali Charara, Véronique Cherfaoui, Paul Crubillé, Gérald Dherbomez, Bertrand Ducourthial

www.hds.utc.fr
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