Test and Evaluation of Cognitive and Social Capabilities of Unmanned Autonomous Systems

First International Workshop on Cognitive Dynamic Systems and Their Applications

Nikita Visnevski
Signal Electronics and Embedded Systems Lab
May 27, 2008

Overview

• Our customer – origins and needs
• Project goals
• Autonomous systems concepts
• Cognitive systems concepts
• Social system concepts
• A few details on our approach
Customer needs and challenges

Our customer - origins

Unmanned and Autonomous System Test (UAST) Focus Area
Our customer – challenges and needs

Challenges: UAVs are becoming more sophisticated, autonomous, and ubiquitous. How does DoD test infrastructure evolve to accommodate for that?

Topic areas covered by the proposal:
1. Information / Knowledge processing / management
2. UAS collaboration in System of Systems (SoS) / Family of Systems (FoS) setting
3. Emergent behavior / complex systems

Stated project goals

- Develop deep understanding of UAV testing
- Develop solid expertise in cognitive systems
- Apply this expertise to meet UAV testing needs through development of a prototype
- Demonstrate results to customers
- Develop technology transition strategy
- Have a lot of fun doing it
Autonomous System Concepts

Rough Timeline of Mobile Robotics

- **1966**: Deliberative School of Robotics
- **1986**: Reactive - Behavioral School of Robotics
- **1990**: Hybrid Control Architecture
- **1995**: Probabilistic Robotics

- "Shakey" SRI's AI Center First Mobile Robot Controlled by AI
- Rodney Brooks
- Ronald Arkin
- S. Thrun
- "Minerva" (1998)
- "Stanley" (2005)
Technical background:
UAVs and autonomy – ALFUS metric (NIST)

Human Independence
Mission Complexity
Environmental Complexity

Environmental Complexity
Solution ratios on:
- Terrain variation
- Object frequency, density, intent
- Climate
- Mobility constraints
- Communication dependencies

Mission Complexity
- Subtasks, decision
- Organization, collaboration
- Performance
- Situation awareness, knowledge requirements

Human Independence
- Frequency, duration, robot initiated interactions
- Workload, skill levels
- Operator to UMS ratio

UMS team Alpha
JGV-1
Cognitive Systems Concepts

Cognition in autonomous systems

• Higher-level cognition developed evolutionary (unless you keep your mind open to “Intelligent design” principle)

• It developed so for a reason – to accommodate for rapid changes in the environment that genetic encoding could not respond to fast enough
Cognitive cycle Technical Reference Model

Types of memory

Memory
- Shot-term
- Long-term
 - Explicit (declarative)
 - Episodic
 - Posterior Associative Cortex
 - Semantic
 - Medial Temporal Lobe
 - Priming
 - Neocortex
 - Procedural
 - Striatum
 - Associative
 - Amygdala / Cerebellum
 - Non-associative
 - Reflex Pathways
Deliberative school

"Shakey"
SRI's AI Center
First Mobile Robot
Controlled by AI

Reactive school

Rodney Brooks
Reactive - Behavioral School of Robotics
Hybrid/probabilistic school

S. Thrun
“Stanley” (2005)

Ronald Arkin
Hybrid Control Architecture

VIDEO
Learning robots

Victor Zykov, Josh Bongard, Hod Lipson

Social Systems Concepts
Technical background: Domains of UAVs

Operational domains

- Complex
- More

- Accessible

Functional domains

- Social Domain
- Cognitive Domain
- Information/Knowledge Domain
- Physical/Battlespace Domain

Fourth facet of the pyramid is needed

- Human Independence
- Mission Complexity
- Environmental Complexity
Emergent behavior in social UAVs

• Emergent/unpredictable behavior is a consequence of decentralized massively parallel system with reactive properties

• Higher-level cognitive systems will be gravitating towards centralized forms of social organization, and therefore, emergent behavior is less likely

A few words about our approach to the cognitive T&E problem
Technical background:
Functional domain coverage – EISA

Technical background:
Demonstration platform
VIDEO